High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

E. Pallecchi, F. Lafont, V. Cavaliere, F. Schopfer, D. Mailly, W. Poirier, A. Ouerghi

ABSTRACT

We investigate the magneto-transport properties of epitaxial graphene single-layer on 4H-SiC(0001), grown by atmospheric pressure graphitization in Ar, followed by H2 intercalation. We directly demonstrate the importance of saturating the Si dangling bonds at the graphene/SiC(0001) interface to achieve high carrier mobility. Upon successful Si dangling bonds elimination, carrier mobility increases from 3 000 cm(2)V(-1)s(-1) to >11 000 cm(2)V(-1)s(-1) at 0.3 K. Additionally, graphene electron concentration tends to decrease from a few 10(12) cm(-2) to less than 10(12) cm(-2). For a typical large (30 × 280 μm(2)) Hall bar, we report the observation of the integer quantum Hall states at 0.3 K with well developed transversal resistance plateaus at Landau level filling factors of ν = 2, 6, 10, 14... 42 and Shubnikov de Haas oscillation of the longitudinal resistivity observed from about 1 T. In such a device, the Hall state quantization at ν = 2, at 19 T and 0.3 K, can be very robust: the dissipation in electronic transport can stay very low, with the longitudinal resistivity lower than 5 mΩ, for measurement currents as high as 250 μA. This is very promising in the view of an application in metrology. More... »

PAGES

4558

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep04558

DOI

http://dx.doi.org/10.1038/srep04558

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045744393

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24691055


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Photonique et de Nanostructures", 
          "id": "https://www.grid.ac/institutes/grid.450332.3", 
          "name": [
            "Laboratoire de Photonique et de Nanostructures (CNRS - LPN), Route de Nozay, 91460 Marcoussis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pallecchi", 
        "givenName": "E.", 
        "id": "sg:person.01130153524.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130153524.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire National De Metrologie Et D'Essais", 
          "id": "https://www.grid.ac/institutes/grid.22040.34", 
          "name": [
            "Laboratoire National de M\u00e9trologie et d'Essais, 29 Avenue Roger Hennequin, 78197 Trappes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lafont", 
        "givenName": "F.", 
        "id": "sg:person.0643164764.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643164764.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Photonique et de Nanostructures", 
          "id": "https://www.grid.ac/institutes/grid.450332.3", 
          "name": [
            "Laboratoire de Photonique et de Nanostructures (CNRS - LPN), Route de Nozay, 91460 Marcoussis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cavaliere", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire National De Metrologie Et D'Essais", 
          "id": "https://www.grid.ac/institutes/grid.22040.34", 
          "name": [
            "Laboratoire National de M\u00e9trologie et d'Essais, 29 Avenue Roger Hennequin, 78197 Trappes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schopfer", 
        "givenName": "F.", 
        "id": "sg:person.01104670354.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104670354.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Photonique et de Nanostructures", 
          "id": "https://www.grid.ac/institutes/grid.450332.3", 
          "name": [
            "Laboratoire de Photonique et de Nanostructures (CNRS - LPN), Route de Nozay, 91460 Marcoussis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mailly", 
        "givenName": "D.", 
        "id": "sg:person.01042215007.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042215007.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire National De Metrologie Et D'Essais", 
          "id": "https://www.grid.ac/institutes/grid.22040.34", 
          "name": [
            "Laboratoire National de M\u00e9trologie et d'Essais, 29 Avenue Roger Hennequin, 78197 Trappes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poirier", 
        "givenName": "W.", 
        "id": "sg:person.0713447263.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713447263.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Photonique et de Nanostructures", 
          "id": "https://www.grid.ac/institutes/grid.450332.3", 
          "name": [
            "Laboratoire de Photonique et de Nanostructures (CNRS - LPN), Route de Nozay, 91460 Marcoussis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouerghi", 
        "givenName": "A.", 
        "id": "sg:person.01325634035.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325634035.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.226803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005729027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.226803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005729027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009938333", 
          "https://doi.org/10.1038/nphys2576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.115416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010999562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.115416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010999562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.085502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013660946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.085502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013660946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.195434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017467825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.195434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017467825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.246104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018750040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.246104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018750040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.246804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020363168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.246804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020363168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.235402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020809074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.235402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020809074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.245403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022834311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.245403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022834311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024657382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024657382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3254329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027055770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029319501", 
          "https://doi.org/10.1038/nphys2487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3643034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031224107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032305837", 
          "https://doi.org/10.1038/nmat2382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033962654", 
          "https://doi.org/10.1038/srep01791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901073g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034721624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901073g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034721624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4729824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037294423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039576675", 
          "https://doi.org/10.1038/nnano.2009.474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.086805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040008071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.086805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040008071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.195417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044172461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.195417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044172461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049601108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049601108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201430a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201430a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2019855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2019855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl402347g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9035302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9035302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn301152p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056224333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.9375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.9375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs.2012.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067966590"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "We investigate the magneto-transport properties of epitaxial graphene single-layer on 4H-SiC(0001), grown by atmospheric pressure graphitization in Ar, followed by H2 intercalation. We directly demonstrate the importance of saturating the Si dangling bonds at the graphene/SiC(0001) interface to achieve high carrier mobility. Upon successful Si dangling bonds elimination, carrier mobility increases from 3 000 cm(2)V(-1)s(-1) to >11 000 cm(2)V(-1)s(-1) at 0.3 K. Additionally, graphene electron concentration tends to decrease from a few 10(12) cm(-2) to less than 10(12) cm(-2). For a typical large (30 \u00d7 280 \u03bcm(2)) Hall bar, we report the observation of the integer quantum Hall states at 0.3 K with well developed transversal resistance plateaus at Landau level filling factors of \u03bd = 2, 6, 10, 14... 42 and Shubnikov de Haas oscillation of the longitudinal resistivity observed from about 1 T. In such a device, the Hall state quantization at \u03bd = 2, at 19 T and 0.3 K, can be very robust: the dissipation in electronic transport can stay very low, with the longitudinal resistivity lower than 5 m\u03a9, for measurement currents as high as 250 \u03bcA. This is very promising in the view of an application in metrology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep04558", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen", 
    "pagination": "4558", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d9e6687f25b299d409068eee65d0d34808fe0e2406c56458d900c356b40739ca"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24691055"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep04558"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045744393"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep04558", 
      "https://app.dimensions.ai/details/publication/pub.1045744393"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2014/140402/srep04558/full/srep04558.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep04558'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep04558'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep04558'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep04558'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep04558 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N6f64d2ea27fa4a8a88c1a31f8cfa7db2
4 schema:citation sg:pub.10.1038/nature04233
5 sg:pub.10.1038/nmat2382
6 sg:pub.10.1038/nnano.2009.474
7 sg:pub.10.1038/nphys2487
8 sg:pub.10.1038/nphys2576
9 sg:pub.10.1038/srep01791
10 https://doi.org/10.1021/nl201430a
11 https://doi.org/10.1021/nl2019855
12 https://doi.org/10.1021/nl402347g
13 https://doi.org/10.1021/nl901073g
14 https://doi.org/10.1021/nl9035302
15 https://doi.org/10.1021/nn301152p
16 https://doi.org/10.1063/1.3254329
17 https://doi.org/10.1063/1.3643034
18 https://doi.org/10.1063/1.4729824
19 https://doi.org/10.1103/physrevb.38.9375
20 https://doi.org/10.1103/physrevb.77.115416
21 https://doi.org/10.1103/physrevb.78.245403
22 https://doi.org/10.1103/physrevb.81.195434
23 https://doi.org/10.1103/physrevb.83.195417
24 https://doi.org/10.1103/physrevb.85.235402
25 https://doi.org/10.1103/physrevb.86.035435
26 https://doi.org/10.1103/physrevlett.103.226803
27 https://doi.org/10.1103/physrevlett.103.246804
28 https://doi.org/10.1103/physrevlett.105.085502
29 https://doi.org/10.1103/physrevlett.108.246104
30 https://doi.org/10.1103/physrevlett.96.086805
31 https://doi.org/10.1103/physrevlett.97.146805
32 https://doi.org/10.1557/mrs.2012.199
33 schema:datePublished 2015-05
34 schema:datePublishedReg 2015-05-01
35 schema:description We investigate the magneto-transport properties of epitaxial graphene single-layer on 4H-SiC(0001), grown by atmospheric pressure graphitization in Ar, followed by H2 intercalation. We directly demonstrate the importance of saturating the Si dangling bonds at the graphene/SiC(0001) interface to achieve high carrier mobility. Upon successful Si dangling bonds elimination, carrier mobility increases from 3 000 cm(2)V(-1)s(-1) to >11 000 cm(2)V(-1)s(-1) at 0.3 K. Additionally, graphene electron concentration tends to decrease from a few 10(12) cm(-2) to less than 10(12) cm(-2). For a typical large (30 × 280 μm(2)) Hall bar, we report the observation of the integer quantum Hall states at 0.3 K with well developed transversal resistance plateaus at Landau level filling factors of ν = 2, 6, 10, 14... 42 and Shubnikov de Haas oscillation of the longitudinal resistivity observed from about 1 T. In such a device, the Hall state quantization at ν = 2, at 19 T and 0.3 K, can be very robust: the dissipation in electronic transport can stay very low, with the longitudinal resistivity lower than 5 mΩ, for measurement currents as high as 250 μA. This is very promising in the view of an application in metrology.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N52c97c77af42407ab822f5c2210b3ae6
40 N6ebcdc07481e4024b2ab20865ce15b6a
41 sg:journal.1045337
42 schema:name High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen
43 schema:pagination 4558
44 schema:productId N237d671c6970460c834beed087037e6d
45 N77239694e0e04645b9f4afadfb6d739f
46 Naf9762ffb06b403fa96b50152ee8efb2
47 Nec81f9557efa46f69210e268693c50f6
48 Nfcecfd7a237646d292c4f438d85815fb
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045744393
50 https://doi.org/10.1038/srep04558
51 schema:sdDatePublished 2019-04-10T22:19
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N35a47ac9771f4747a7c3e0362d51e688
54 schema:url http://www.nature.com/srep/2014/140402/srep04558/full/srep04558.html
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N171bc75f242c48a5a333d1f9caf5d04d rdf:first sg:person.01104670354.36
59 rdf:rest N3e1183843e2e49fd80a3d99831b4c409
60 N2046a57c69244805b75225f0d4d0bc5e rdf:first sg:person.0643164764.52
61 rdf:rest Ne2313858cfdf43be9da61438023c198b
62 N237d671c6970460c834beed087037e6d schema:name dimensions_id
63 schema:value pub.1045744393
64 rdf:type schema:PropertyValue
65 N35a47ac9771f4747a7c3e0362d51e688 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N3e1183843e2e49fd80a3d99831b4c409 rdf:first sg:person.01042215007.20
68 rdf:rest Ndb6937b6dbf14a7fa75baad93d7754cf
69 N52c97c77af42407ab822f5c2210b3ae6 schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N6ebcdc07481e4024b2ab20865ce15b6a schema:volumeNumber 4
72 rdf:type schema:PublicationVolume
73 N6f64d2ea27fa4a8a88c1a31f8cfa7db2 rdf:first sg:person.01130153524.29
74 rdf:rest N2046a57c69244805b75225f0d4d0bc5e
75 N77239694e0e04645b9f4afadfb6d739f schema:name readcube_id
76 schema:value d9e6687f25b299d409068eee65d0d34808fe0e2406c56458d900c356b40739ca
77 rdf:type schema:PropertyValue
78 Naf9762ffb06b403fa96b50152ee8efb2 schema:name doi
79 schema:value 10.1038/srep04558
80 rdf:type schema:PropertyValue
81 Ndb6937b6dbf14a7fa75baad93d7754cf rdf:first sg:person.0713447263.04
82 rdf:rest Nf8e263145513474997bf548e945037e9
83 Ne2313858cfdf43be9da61438023c198b rdf:first Nf1ca4c7f04a348ab98ae4cf0552871ce
84 rdf:rest N171bc75f242c48a5a333d1f9caf5d04d
85 Nec81f9557efa46f69210e268693c50f6 schema:name nlm_unique_id
86 schema:value 101563288
87 rdf:type schema:PropertyValue
88 Nf1ca4c7f04a348ab98ae4cf0552871ce schema:affiliation https://www.grid.ac/institutes/grid.450332.3
89 schema:familyName Cavaliere
90 schema:givenName V.
91 rdf:type schema:Person
92 Nf8e263145513474997bf548e945037e9 rdf:first sg:person.01325634035.69
93 rdf:rest rdf:nil
94 Nfcecfd7a237646d292c4f438d85815fb schema:name pubmed_id
95 schema:value 24691055
96 rdf:type schema:PropertyValue
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
101 schema:name Condensed Matter Physics
102 rdf:type schema:DefinedTerm
103 sg:journal.1045337 schema:issn 2045-2322
104 schema:name Scientific Reports
105 rdf:type schema:Periodical
106 sg:person.01042215007.20 schema:affiliation https://www.grid.ac/institutes/grid.450332.3
107 schema:familyName Mailly
108 schema:givenName D.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042215007.20
110 rdf:type schema:Person
111 sg:person.01104670354.36 schema:affiliation https://www.grid.ac/institutes/grid.22040.34
112 schema:familyName Schopfer
113 schema:givenName F.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104670354.36
115 rdf:type schema:Person
116 sg:person.01130153524.29 schema:affiliation https://www.grid.ac/institutes/grid.450332.3
117 schema:familyName Pallecchi
118 schema:givenName E.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130153524.29
120 rdf:type schema:Person
121 sg:person.01325634035.69 schema:affiliation https://www.grid.ac/institutes/grid.450332.3
122 schema:familyName Ouerghi
123 schema:givenName A.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325634035.69
125 rdf:type schema:Person
126 sg:person.0643164764.52 schema:affiliation https://www.grid.ac/institutes/grid.22040.34
127 schema:familyName Lafont
128 schema:givenName F.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643164764.52
130 rdf:type schema:Person
131 sg:person.0713447263.04 schema:affiliation https://www.grid.ac/institutes/grid.22040.34
132 schema:familyName Poirier
133 schema:givenName W.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713447263.04
135 rdf:type schema:Person
136 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
137 https://doi.org/10.1038/nature04233
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nmat2382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032305837
140 https://doi.org/10.1038/nmat2382
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nnano.2009.474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039576675
143 https://doi.org/10.1038/nnano.2009.474
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphys2487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029319501
146 https://doi.org/10.1038/nphys2487
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphys2576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009938333
149 https://doi.org/10.1038/nphys2576
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep01791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033962654
152 https://doi.org/10.1038/srep01791
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/nl201430a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218645
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/nl2019855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218733
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/nl402347g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220246
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/nl901073g schema:sameAs https://app.dimensions.ai/details/publication/pub.1034721624
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/nl9035302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222281
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/nn301152p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224333
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.3254329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027055770
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.3643034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031224107
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.4729824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037294423
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.38.9375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060548347
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevb.77.115416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010999562
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.78.245403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022834311
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.81.195434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017467825
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.83.195417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044172461
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.85.235402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020809074
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.86.035435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024657382
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.103.226803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005729027
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.103.246804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020363168
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.105.085502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013660946
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.108.246104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018750040
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.96.086805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040008071
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.97.146805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049601108
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1557/mrs.2012.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067966590
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.22040.34 schema:alternateName Laboratoire National De Metrologie Et D'Essais
201 schema:name Laboratoire National de Métrologie et d'Essais, 29 Avenue Roger Hennequin, 78197 Trappes, France
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.450332.3 schema:alternateName Laboratoire de Photonique et de Nanostructures
204 schema:name Laboratoire de Photonique et de Nanostructures (CNRS - LPN), Route de Nozay, 91460 Marcoussis, France
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...