Average synaptic activity and neural networks topology: a global inverse problem View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

Raffaella Burioni, Mario Casartelli, Matteo di Volo, Roberto Livi, Alessandro Vezzani

ABSTRACT

The dynamics of neural networks is often characterized by collective behavior and quasi-synchronous events, where a large fraction of neurons fire in short time intervals, separated by uncorrelated firing activity. These global temporal signals are crucial for brain functioning. They strongly depend on the topology of the network and on the fluctuations of the connectivity. We propose a heterogeneous mean-field approach to neural dynamics on random networks, that explicitly preserves the disorder in the topology at growing network sizes, and leads to a set of self-consistent equations. Within this approach, we provide an effective description of microscopic and large scale temporal signals in a leaky integrate-and-fire model with short term plasticity, where quasi-synchronous events arise. Our equations provide a clear analytical picture of the dynamics, evidencing the contributions of both periodic (locked) and aperiodic (unlocked) neurons to the measurable average signal. In particular, we formulate and solve a global inverse problem of reconstructing the in-degree distribution from the knowledge of the average activity field. Our method is very general and applies to a large class of dynamical models on dense random networks. More... »

PAGES

4336

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep04336

DOI

http://dx.doi.org/10.1038/srep04336

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045921089

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24613973


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synaptic Transmission", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "1] Dipartimento di Fisica e Scienza della Terra, Universit\u00e0 di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy [2] INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burioni", 
        "givenName": "Raffaella", 
        "id": "sg:person.015212753364.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015212753364.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "1] Dipartimento di Fisica e Scienza della Terra, Universit\u00e0 di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy [2] INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casartelli", 
        "givenName": "Mario", 
        "id": "sg:person.015225266142.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "1] Dipartimento di Fisica e Scienza della Terra, Universit\u00e0 di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy [2] Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1 - 50019 Sesto Fiorentino, Italy [3] INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "di Volo", 
        "givenName": "Matteo", 
        "id": "sg:person.01355673366.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355673366.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "1] Dipartimento di Fisica, Universit\u00e0 di Firenze, via Sansone, 1 - 50019 Sesto Fiorentino, Italy [2] Istituto dei Sistemi Complessi, CNR, via Madonna del Piano 10 - 50019 Sesto Fiorentino, Italy [3] INFN Sez. Firenze, via Sansone, 1 -50019 Sesto Fiorentino, Italy [4] Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1 - 50019 Sesto Fiorentino, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livi", 
        "givenName": "Roberto", 
        "id": "sg:person.0772676522.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "1] S3, CNR Istituto di Nanoscienze, Via Campi, 213A - 41125 Modena, Italy [2] Dipartimento di Fisica e Scienza della Terra, Universit\u00e0 di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vezzani", 
        "givenName": "Alessandro", 
        "id": "sg:person.01160553163.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160553163.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.109.138103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003999713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.138103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003999713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.8.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005763121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008765199", 
          "https://doi.org/10.1038/nphys2160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/1/013004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008975530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/1/013004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008975530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009944951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009944951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018922144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018922144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.210601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020299269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.210601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020299269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020463606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00955.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021062070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1091-13.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022834396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023139478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023139478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2013.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024036021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2008.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029218506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.188701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032077264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.188701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032077264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.046119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032313081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.046119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032313081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906705106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033928853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0559-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041434717", 
          "https://doi.org/10.1007/978-1-4612-0559-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0559-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041434717", 
          "https://doi.org/10.1007/978-1-4612-0559-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/39/26/l01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043475073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2003.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052478852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.2.719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053345568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.032801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.032801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127402004292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062953710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127402004802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062953761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.20-01-00001.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074573682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.20-01-j0003.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074573735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511791383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511780356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780195301069.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098746207"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "The dynamics of neural networks is often characterized by collective behavior and quasi-synchronous events, where a large fraction of neurons fire in short time intervals, separated by uncorrelated firing activity. These global temporal signals are crucial for brain functioning. They strongly depend on the topology of the network and on the fluctuations of the connectivity. We propose a heterogeneous mean-field approach to neural dynamics on random networks, that explicitly preserves the disorder in the topology at growing network sizes, and leads to a set of self-consistent equations. Within this approach, we provide an effective description of microscopic and large scale temporal signals in a leaky integrate-and-fire model with short term plasticity, where quasi-synchronous events arise. Our equations provide a clear analytical picture of the dynamics, evidencing the contributions of both periodic (locked) and aperiodic (unlocked) neurons to the measurable average signal. In particular, we formulate and solve a global inverse problem of reconstructing the in-degree distribution from the knowledge of the average activity field. Our method is very general and applies to a large class of dynamical models on dense random networks. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep04336", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Average synaptic activity and neural networks topology: a global inverse problem", 
    "pagination": "4336", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dabe54898f4aee663c179b4eb1a3e911cbda59279f9bc10ae9e779b8af473da1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24613973"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep04336"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045921089"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep04336", 
      "https://app.dimensions.ai/details/publication/pub.1045921089"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://full/.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep04336'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep04336'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep04336'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep04336'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      69 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep04336 schema:about N0bcd4ea9788a49228b16fa5dfc4fae9c
2 N13f2b6e470ec403b86de45b8296ce671
3 N1522842b74384e70ab51cb5ff2a75f71
4 N1a90b972ce34476c91e5bb521387b539
5 N490e4186776847f8909ba135d8729f8e
6 N93a4e5a3acfe4af4bec9dbdc6ddf786d
7 N99ac167e3ce842dfac364d59e772ef65
8 N9ecd022ff181496a95b52beec6b5bc76
9 Na49ee6fa95d6482e92a8fb87788656af
10 anzsrc-for:11
11 anzsrc-for:1109
12 schema:author N20ba3f9c7b6c4b868d18fc0ac1ec8593
13 schema:citation sg:pub.10.1007/978-1-4612-0559-3
14 sg:pub.10.1038/nature04701
15 sg:pub.10.1038/nphys2160
16 https://doi.org/10.1016/j.chaos.2013.08.012
17 https://doi.org/10.1016/j.physa.2003.11.015
18 https://doi.org/10.1016/j.physrep.2005.10.009
19 https://doi.org/10.1016/j.physrep.2008.09.002
20 https://doi.org/10.1017/cbo9780511780356
21 https://doi.org/10.1017/cbo9780511791383
22 https://doi.org/10.1073/pnas.0906705106
23 https://doi.org/10.1073/pnas.94.2.719
24 https://doi.org/10.1088/0305-4470/39/26/l01
25 https://doi.org/10.1088/1367-2630/13/1/013004
26 https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
27 https://doi.org/10.1103/physreve.76.046102
28 https://doi.org/10.1103/physreve.81.046119
29 https://doi.org/10.1103/physreve.87.032801
30 https://doi.org/10.1103/physrevlett.109.138103
31 https://doi.org/10.1103/physrevlett.110.210601
32 https://doi.org/10.1103/physrevlett.71.1280
33 https://doi.org/10.1103/physrevlett.86.3200
34 https://doi.org/10.1103/physrevlett.95.188701
35 https://doi.org/10.1103/revmodphys.80.1275
36 https://doi.org/10.1142/s0218127402004292
37 https://doi.org/10.1142/s0218127402004802
38 https://doi.org/10.1152/jn.00955.2002
39 https://doi.org/10.1162/089976698300017502
40 https://doi.org/10.1162/neco.2006.18.8.2004
41 https://doi.org/10.1523/jneurosci.1091-13.2013
42 https://doi.org/10.1523/jneurosci.20-01-00001.2000
43 https://doi.org/10.1523/jneurosci.20-01-j0003.2000
44 schema:datePublished 2015-05
45 schema:datePublishedReg 2015-05-01
46 schema:description The dynamics of neural networks is often characterized by collective behavior and quasi-synchronous events, where a large fraction of neurons fire in short time intervals, separated by uncorrelated firing activity. These global temporal signals are crucial for brain functioning. They strongly depend on the topology of the network and on the fluctuations of the connectivity. We propose a heterogeneous mean-field approach to neural dynamics on random networks, that explicitly preserves the disorder in the topology at growing network sizes, and leads to a set of self-consistent equations. Within this approach, we provide an effective description of microscopic and large scale temporal signals in a leaky integrate-and-fire model with short term plasticity, where quasi-synchronous events arise. Our equations provide a clear analytical picture of the dynamics, evidencing the contributions of both periodic (locked) and aperiodic (unlocked) neurons to the measurable average signal. In particular, we formulate and solve a global inverse problem of reconstructing the in-degree distribution from the knowledge of the average activity field. Our method is very general and applies to a large class of dynamical models on dense random networks.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N130b34a88eac4534a75cd50ef76ad74b
51 Nb0c38673d58944a7ba6bee1081464b4c
52 sg:journal.1045337
53 schema:name Average synaptic activity and neural networks topology: a global inverse problem
54 schema:pagination 4336
55 schema:productId N0102bc7eed0845de92ec7625ad8c52ea
56 N28c6b34b688341c6a70d9eb838f7ac94
57 N6ae494a79026404d9c8491f722dc9f81
58 Nb8ca1eff815a491ba0682ab93150bb40
59 Nbea2bd0917134ea18e94aa56f1b40546
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045921089
61 https://doi.org/10.1038/srep04336
62 schema:sdDatePublished 2019-04-10T23:12
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nae5fb1e988384c0cba10149af9527fb0
65 schema:url http://full/.html
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0102bc7eed0845de92ec7625ad8c52ea schema:name nlm_unique_id
70 schema:value 101563288
71 rdf:type schema:PropertyValue
72 N0bcd4ea9788a49228b16fa5dfc4fae9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Computer Simulation
74 rdf:type schema:DefinedTerm
75 N130b34a88eac4534a75cd50ef76ad74b schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N13f2b6e470ec403b86de45b8296ce671 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Nerve Net
79 rdf:type schema:DefinedTerm
80 N1522842b74384e70ab51cb5ff2a75f71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Neurons
82 rdf:type schema:DefinedTerm
83 N1a90b972ce34476c91e5bb521387b539 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Membrane Potentials
85 rdf:type schema:DefinedTerm
86 N20ba3f9c7b6c4b868d18fc0ac1ec8593 rdf:first sg:person.015212753364.20
87 rdf:rest N87ec05f583884d31b8201c9744ff69fc
88 N28c6b34b688341c6a70d9eb838f7ac94 schema:name readcube_id
89 schema:value dabe54898f4aee663c179b4eb1a3e911cbda59279f9bc10ae9e779b8af473da1
90 rdf:type schema:PropertyValue
91 N490e4186776847f8909ba135d8729f8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Monte Carlo Method
93 rdf:type schema:DefinedTerm
94 N61a101be99cf4f969c2601c2aa65709b rdf:first sg:person.01160553163.87
95 rdf:rest rdf:nil
96 N6ae494a79026404d9c8491f722dc9f81 schema:name dimensions_id
97 schema:value pub.1045921089
98 rdf:type schema:PropertyValue
99 N87ec05f583884d31b8201c9744ff69fc rdf:first sg:person.015225266142.12
100 rdf:rest Naccdb8d355b248c8931fd41ac4471258
101 N93a4e5a3acfe4af4bec9dbdc6ddf786d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Models, Neurological
103 rdf:type schema:DefinedTerm
104 N99ac167e3ce842dfac364d59e772ef65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 N9ecd022ff181496a95b52beec6b5bc76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Animals
109 rdf:type schema:DefinedTerm
110 Na49ee6fa95d6482e92a8fb87788656af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Synaptic Transmission
112 rdf:type schema:DefinedTerm
113 Naccdb8d355b248c8931fd41ac4471258 rdf:first sg:person.01355673366.05
114 rdf:rest Nc74107347c24438aa13c2ddca6f20d92
115 Nae5fb1e988384c0cba10149af9527fb0 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nb0c38673d58944a7ba6bee1081464b4c schema:volumeNumber 4
118 rdf:type schema:PublicationVolume
119 Nb8ca1eff815a491ba0682ab93150bb40 schema:name doi
120 schema:value 10.1038/srep04336
121 rdf:type schema:PropertyValue
122 Nbea2bd0917134ea18e94aa56f1b40546 schema:name pubmed_id
123 schema:value 24613973
124 rdf:type schema:PropertyValue
125 Nc74107347c24438aa13c2ddca6f20d92 rdf:first sg:person.0772676522.84
126 rdf:rest N61a101be99cf4f969c2601c2aa65709b
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
131 schema:name Neurosciences
132 rdf:type schema:DefinedTerm
133 sg:journal.1045337 schema:issn 2045-2322
134 schema:name Scientific Reports
135 rdf:type schema:Periodical
136 sg:person.01160553163.87 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
137 schema:familyName Vezzani
138 schema:givenName Alessandro
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160553163.87
140 rdf:type schema:Person
141 sg:person.01355673366.05 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
142 schema:familyName di Volo
143 schema:givenName Matteo
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355673366.05
145 rdf:type schema:Person
146 sg:person.015212753364.20 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
147 schema:familyName Burioni
148 schema:givenName Raffaella
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015212753364.20
150 rdf:type schema:Person
151 sg:person.015225266142.12 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
152 schema:familyName Casartelli
153 schema:givenName Mario
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12
155 rdf:type schema:Person
156 sg:person.0772676522.84 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
157 schema:familyName Livi
158 schema:givenName Roberto
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84
160 rdf:type schema:Person
161 sg:pub.10.1007/978-1-4612-0559-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041434717
162 https://doi.org/10.1007/978-1-4612-0559-3
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature04701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013920925
165 https://doi.org/10.1038/nature04701
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nphys2160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008765199
168 https://doi.org/10.1038/nphys2160
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.chaos.2013.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024036021
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.physa.2003.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052478852
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.physrep.2008.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029218506
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1017/cbo9780511780356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700502
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1017/cbo9780511791383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667199
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.0906705106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033928853
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1073/pnas.94.2.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053345568
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1088/0305-4470/39/26/l01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043475073
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1088/1367-2630/13/1/013004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008975530
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/acprof:oso/9780195301069.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098746207
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physreve.76.046102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009944951
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physreve.81.046119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032313081
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physreve.87.032801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060744630
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.109.138103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003999713
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.110.210601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020299269
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.71.1280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807424
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.86.3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018922144
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.95.188701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032077264
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/revmodphys.80.1275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023139478
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1142/s0218127402004292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062953710
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1142/s0218127402004802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062953761
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1152/jn.00955.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021062070
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1162/089976698300017502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020463606
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1162/neco.2006.18.8.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005763121
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1523/jneurosci.1091-13.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022834396
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1523/jneurosci.20-01-00001.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074573682
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1523/jneurosci.20-01-j0003.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074573735
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
227 schema:name 1] Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy [2] Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1 - 50019 Sesto Fiorentino, Italy [3] INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy.
228 1] Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy [2] INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy.
229 1] S3, CNR Istituto di Nanoscienze, Via Campi, 213A - 41125 Modena, Italy [2] Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy.
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
232 schema:name 1] Dipartimento di Fisica, Università di Firenze, via Sansone, 1 - 50019 Sesto Fiorentino, Italy [2] Istituto dei Sistemi Complessi, CNR, via Madonna del Piano 10 - 50019 Sesto Fiorentino, Italy [3] INFN Sez. Firenze, via Sansone, 1 -50019 Sesto Fiorentino, Italy [4] Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1 - 50019 Sesto Fiorentino, Italy.
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...