Regulating the Transport of DNA through Biofriendly Nanochannels in a Thin Solid Membrane View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

Deqiang Wang, Stefan Harrer, Binquan Luan, Gustavo Stolovitzky, Hongbo Peng, Ali Afzali-Ardakani

ABSTRACT

Channels formed by membrane proteins regulate the transport of water, ions or nutrients that are essential to cells' metabolism. Recent advances in nanotechnology allow us to fabricate solid-state nanopores for transporting and analyzing biomolecules. However, uncontrollable surface properties of a fabricated nanopore cause irregular transport of biomolecules, limiting potential biomimetic applications. Here we show that a nanopore functionalized with a self-assembled monolayer (SAM) can potentially regulate the transport of a DNA molecule by changing functional groups of the SAM. We found that an enhanced interaction between DNA and a SAM-coated nanopore can slow down the translocation speed of DNA molecules and increase the DNA capture-rate. Our results demonstrate that the transport of DNA molecules inside nanopores could be modulated by coating a SAM on the pore surface. Our method to control the DNA motion inside a nanopore may find its applications in nanopore-based DNA sequencing devices. More... »

PAGES

3985

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep03985

DOI

http://dx.doi.org/10.1038/srep03985

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003245305

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24496378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrophobic and Hydrophilic Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ion Channels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membranes, Artificial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Dynamics Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanopores", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Properties", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Deqiang", 
        "id": "sg:person.01117440225.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117440225.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Australia", 
          "id": "https://www.grid.ac/institutes/grid.481553.e", 
          "name": [
            "IBM Research Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harrer", 
        "givenName": "Stefan", 
        "id": "sg:person.0727211550.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727211550.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luan", 
        "givenName": "Binquan", 
        "id": "sg:person.01254473275.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254473275.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stolovitzky", 
        "givenName": "Gustavo", 
        "id": "sg:person.01277712747.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277712747.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Hongbo", 
        "id": "sg:person.01062130277.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062130277.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research \u2013 Thomas J. Watson Research Center", 
          "id": "https://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Afzali-Ardakani", 
        "givenName": "Ali", 
        "id": "sg:person.01206360075.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206360075.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nnano.2009.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000093273", 
          "https://doi.org/10.1038/nnano.2009.379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000093273", 
          "https://doi.org/10.1038/nnano.2009.379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061632", 
          "https://doi.org/10.1038/nnano.2010.237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp063896o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004797968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp063896o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004797968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1146126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005766707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006226243", 
          "https://doi.org/10.1038/nnano.2012.24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070668c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007986685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070668c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007986685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2011.08.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011393974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052107w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012253571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052107w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012253571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070462b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013352629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070462b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013352629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.24.13770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016336761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp973084f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019311063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp973084f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019311063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9027318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019982221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9027318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019982221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020306623", 
          "https://doi.org/10.1038/nnano.2007.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021183450", 
          "https://doi.org/10.1038/nnano.2011.129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr300444k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023324360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2798247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028565647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl204098n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031273157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037155475", 
          "https://doi.org/10.1038/nbt.1495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037237720", 
          "https://doi.org/10.1038/nnano.2011.12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037474890", 
          "https://doi.org/10.1038/nnano.2011.217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.108.140475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039688081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040543339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040543339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1038874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040939458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1038874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040939458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35084037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045265151", 
          "https://doi.org/10.1038/35084037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35084037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045265151", 
          "https://doi.org/10.1038/35084037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045286616", 
          "https://doi.org/10.1038/nnano.2007.78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045286616", 
          "https://doi.org/10.1038/nnano.2007.78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103873a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046238968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103873a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046238968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.104.057588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050256451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn301672g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056224409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.445869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058023889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.466711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058044717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.238103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.238103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.256.5055.385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062543822"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Channels formed by membrane proteins regulate the transport of water, ions or nutrients that are essential to cells' metabolism. Recent advances in nanotechnology allow us to fabricate solid-state nanopores for transporting and analyzing biomolecules. However, uncontrollable surface properties of a fabricated nanopore cause irregular transport of biomolecules, limiting potential biomimetic applications. Here we show that a nanopore functionalized with a self-assembled monolayer (SAM) can potentially regulate the transport of a DNA molecule by changing functional groups of the SAM. We found that an enhanced interaction between DNA and a SAM-coated nanopore can slow down the translocation speed of DNA molecules and increase the DNA capture-rate. Our results demonstrate that the transport of DNA molecules inside nanopores could be modulated by coating a SAM on the pore surface. Our method to control the DNA motion inside a nanopore may find its applications in nanopore-based DNA sequencing devices. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep03985", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529374", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Regulating the Transport of DNA through Biofriendly Nanochannels in a Thin Solid Membrane", 
    "pagination": "3985", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0f7583264550c34541238a89f169868134dd8a6d9c5190571a10157000353fa4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24496378"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep03985"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003245305"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep03985", 
      "https://app.dimensions.ai/details/publication/pub.1003245305"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep03985"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep03985'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep03985'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep03985'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep03985'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      70 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep03985 schema:about N04d19e83035c4c11aac754e1dfc64f93
2 N0c56f3e5542a4ec486e67fb1ea5de562
3 N34c052d79f08438ab28388f683e49dc7
4 N615899bf967f4a3ba90ae48db643cc43
5 N66ec664a952d4c9ca51a0302f2df5af8
6 N929795d00e4941e9ad0494d1cdfc41e5
7 Na85ae883b3b94877a3d81001e9b8f18c
8 Ncba044d38455455c97b1d5b1eb0dd3c2
9 Nd86b42320e144073bd8621f3f8a65b00
10 anzsrc-for:03
11 anzsrc-for:0306
12 schema:author Ncf5dc496266a4a1a8c91fcf7a3457963
13 schema:citation sg:pub.10.1038/35084037
14 sg:pub.10.1038/nbt.1495
15 sg:pub.10.1038/nnano.2007.27
16 sg:pub.10.1038/nnano.2007.78
17 sg:pub.10.1038/nnano.2009.379
18 sg:pub.10.1038/nnano.2010.237
19 sg:pub.10.1038/nnano.2011.12
20 sg:pub.10.1038/nnano.2011.129
21 sg:pub.10.1038/nnano.2011.217
22 sg:pub.10.1038/nnano.2012.24
23 https://doi.org/10.1002/jcc.20289
24 https://doi.org/10.1016/j.bpj.2011.08.038
25 https://doi.org/10.1021/cr300444k
26 https://doi.org/10.1021/jp063896o
27 https://doi.org/10.1021/jp973084f
28 https://doi.org/10.1021/nl052107w
29 https://doi.org/10.1021/nl070462b
30 https://doi.org/10.1021/nl070668c
31 https://doi.org/10.1021/nl103873a
32 https://doi.org/10.1021/nl1038874
33 https://doi.org/10.1021/nl204098n
34 https://doi.org/10.1021/nl9027318
35 https://doi.org/10.1021/nn301672g
36 https://doi.org/10.1063/1.2798247
37 https://doi.org/10.1063/1.445869
38 https://doi.org/10.1063/1.466711
39 https://doi.org/10.1073/pnas.93.24.13770
40 https://doi.org/10.1103/physrevlett.104.238103
41 https://doi.org/10.1126/science.1146126
42 https://doi.org/10.1126/science.256.5055.385
43 https://doi.org/10.1529/biophysj.104.057588
44 https://doi.org/10.1529/biophysj.108.140475
45 schema:datePublished 2015-05
46 schema:datePublishedReg 2015-05-01
47 schema:description Channels formed by membrane proteins regulate the transport of water, ions or nutrients that are essential to cells' metabolism. Recent advances in nanotechnology allow us to fabricate solid-state nanopores for transporting and analyzing biomolecules. However, uncontrollable surface properties of a fabricated nanopore cause irregular transport of biomolecules, limiting potential biomimetic applications. Here we show that a nanopore functionalized with a self-assembled monolayer (SAM) can potentially regulate the transport of a DNA molecule by changing functional groups of the SAM. We found that an enhanced interaction between DNA and a SAM-coated nanopore can slow down the translocation speed of DNA molecules and increase the DNA capture-rate. Our results demonstrate that the transport of DNA molecules inside nanopores could be modulated by coating a SAM on the pore surface. Our method to control the DNA motion inside a nanopore may find its applications in nanopore-based DNA sequencing devices.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N289d3c8679784eefb4bd98819f3d13f9
52 Ne89261b0101742cb950e7443c48bd765
53 sg:journal.1045337
54 schema:name Regulating the Transport of DNA through Biofriendly Nanochannels in a Thin Solid Membrane
55 schema:pagination 3985
56 schema:productId N4ee29a121749453181b6d6aea77b5942
57 N5cca60fd383d4f048d8943cc002b3470
58 N7e1208963d774f2aadef5111ab3ba3d6
59 Nab5af635fb3d484882b4dd3fdfb42710
60 Nba28edc64e1c4b7d854fc42d9148b687
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003245305
62 https://doi.org/10.1038/srep03985
63 schema:sdDatePublished 2019-04-10T16:28
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N32e6f4c67bd849098639a2d69d42fee7
66 schema:url http://www.nature.com/articles/srep03985
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N04d19e83035c4c11aac754e1dfc64f93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Biomedical Engineering
72 rdf:type schema:DefinedTerm
73 N0c56f3e5542a4ec486e67fb1ea5de562 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Hydrophobic and Hydrophilic Interactions
75 rdf:type schema:DefinedTerm
76 N289d3c8679784eefb4bd98819f3d13f9 schema:volumeNumber 4
77 rdf:type schema:PublicationVolume
78 N2ee776af34cc4e48a522bfddcfacd263 rdf:first sg:person.01062130277.40
79 rdf:rest Nd0d622b011eb45e1a3200bec8237b170
80 N32e6f4c67bd849098639a2d69d42fee7 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N34c052d79f08438ab28388f683e49dc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Ion Channels
84 rdf:type schema:DefinedTerm
85 N4ee29a121749453181b6d6aea77b5942 schema:name doi
86 schema:value 10.1038/srep03985
87 rdf:type schema:PropertyValue
88 N5cca60fd383d4f048d8943cc002b3470 schema:name pubmed_id
89 schema:value 24496378
90 rdf:type schema:PropertyValue
91 N615899bf967f4a3ba90ae48db643cc43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Surface Properties
93 rdf:type schema:DefinedTerm
94 N66ec664a952d4c9ca51a0302f2df5af8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Molecular Dynamics Simulation
96 rdf:type schema:DefinedTerm
97 N76f558a134084dbcac3d6683f0dfc746 rdf:first sg:person.01277712747.19
98 rdf:rest N2ee776af34cc4e48a522bfddcfacd263
99 N7e1208963d774f2aadef5111ab3ba3d6 schema:name dimensions_id
100 schema:value pub.1003245305
101 rdf:type schema:PropertyValue
102 N929795d00e4941e9ad0494d1cdfc41e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Nanopores
104 rdf:type schema:DefinedTerm
105 Na85ae883b3b94877a3d81001e9b8f18c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Nanotechnology
107 rdf:type schema:DefinedTerm
108 Nab5af635fb3d484882b4dd3fdfb42710 schema:name readcube_id
109 schema:value 0f7583264550c34541238a89f169868134dd8a6d9c5190571a10157000353fa4
110 rdf:type schema:PropertyValue
111 Nba28edc64e1c4b7d854fc42d9148b687 schema:name nlm_unique_id
112 schema:value 101563288
113 rdf:type schema:PropertyValue
114 Ncba044d38455455c97b1d5b1eb0dd3c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name DNA
116 rdf:type schema:DefinedTerm
117 Ncf5dc496266a4a1a8c91fcf7a3457963 rdf:first sg:person.01117440225.65
118 rdf:rest Ne5965cbb142f4387854eab3aae10cabe
119 Nd0d622b011eb45e1a3200bec8237b170 rdf:first sg:person.01206360075.98
120 rdf:rest rdf:nil
121 Nd86b42320e144073bd8621f3f8a65b00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Membranes, Artificial
123 rdf:type schema:DefinedTerm
124 Ndaafd4086a154324acbc57afb62c6bf7 rdf:first sg:person.01254473275.25
125 rdf:rest N76f558a134084dbcac3d6683f0dfc746
126 Ne5965cbb142f4387854eab3aae10cabe rdf:first sg:person.0727211550.48
127 rdf:rest Ndaafd4086a154324acbc57afb62c6bf7
128 Ne89261b0101742cb950e7443c48bd765 schema:issueNumber 1
129 rdf:type schema:PublicationIssue
130 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
131 schema:name Chemical Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Chemistry (incl. Structural)
135 rdf:type schema:DefinedTerm
136 sg:grant.2529374 http://pending.schema.org/fundedItem sg:pub.10.1038/srep03985
137 rdf:type schema:MonetaryGrant
138 sg:journal.1045337 schema:issn 2045-2322
139 schema:name Scientific Reports
140 rdf:type schema:Periodical
141 sg:person.01062130277.40 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
142 schema:familyName Peng
143 schema:givenName Hongbo
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062130277.40
145 rdf:type schema:Person
146 sg:person.01117440225.65 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
147 schema:familyName Wang
148 schema:givenName Deqiang
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117440225.65
150 rdf:type schema:Person
151 sg:person.01206360075.98 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
152 schema:familyName Afzali-Ardakani
153 schema:givenName Ali
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206360075.98
155 rdf:type schema:Person
156 sg:person.01254473275.25 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
157 schema:familyName Luan
158 schema:givenName Binquan
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254473275.25
160 rdf:type schema:Person
161 sg:person.01277712747.19 schema:affiliation https://www.grid.ac/institutes/grid.481554.9
162 schema:familyName Stolovitzky
163 schema:givenName Gustavo
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277712747.19
165 rdf:type schema:Person
166 sg:person.0727211550.48 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
167 schema:familyName Harrer
168 schema:givenName Stefan
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727211550.48
170 rdf:type schema:Person
171 sg:pub.10.1038/35084037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265151
172 https://doi.org/10.1038/35084037
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nbt.1495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037155475
175 https://doi.org/10.1038/nbt.1495
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nnano.2007.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020306623
178 https://doi.org/10.1038/nnano.2007.27
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nnano.2007.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045286616
181 https://doi.org/10.1038/nnano.2007.78
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nnano.2009.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000093273
184 https://doi.org/10.1038/nnano.2009.379
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nnano.2010.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061632
187 https://doi.org/10.1038/nnano.2010.237
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nnano.2011.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037237720
190 https://doi.org/10.1038/nnano.2011.12
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nnano.2011.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021183450
193 https://doi.org/10.1038/nnano.2011.129
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nnano.2011.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037474890
196 https://doi.org/10.1038/nnano.2011.217
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nnano.2012.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006226243
199 https://doi.org/10.1038/nnano.2012.24
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/jcc.20289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040543339
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.bpj.2011.08.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011393974
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/cr300444k schema:sameAs https://app.dimensions.ai/details/publication/pub.1023324360
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/jp063896o schema:sameAs https://app.dimensions.ai/details/publication/pub.1004797968
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/jp973084f schema:sameAs https://app.dimensions.ai/details/publication/pub.1019311063
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/nl052107w schema:sameAs https://app.dimensions.ai/details/publication/pub.1012253571
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1021/nl070462b schema:sameAs https://app.dimensions.ai/details/publication/pub.1013352629
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1021/nl070668c schema:sameAs https://app.dimensions.ai/details/publication/pub.1007986685
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/nl103873a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046238968
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/nl1038874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040939458
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/nl204098n schema:sameAs https://app.dimensions.ai/details/publication/pub.1031273157
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/nl9027318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019982221
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1021/nn301672g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224409
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1063/1.2798247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028565647
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1063/1.445869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058023889
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1063/1.466711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058044717
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1073/pnas.93.24.13770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016336761
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.104.238103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757090
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1126/science.1146126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005766707
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1126/science.256.5055.385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543822
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1529/biophysj.104.057588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050256451
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1529/biophysj.108.140475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039688081
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.481553.e schema:alternateName IBM Research - Australia
246 schema:name IBM Research Australia, 204 Lygon Street, 3053 Carlton, VIC, Australia
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.481554.9 schema:alternateName IBM Research – Thomas J. Watson Research Center
249 schema:name IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598, USA
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...