The importance of observation versus process error in analyses of global ungulate populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Farshid S. Ahrestani, Mark Hebblewhite, Eric Post

ABSTRACT

Population abundance data vary widely in quality and are rarely accurate. The two main components of error in such data are observation and process error. We used Bayesian state space models to estimate the observation and process error in time-series of 55 globally distributed populations of two species, Cervus elaphus (elk/red deer) and Rangifer tarandus (caribou/reindeer). We examined variation among populations and species in the magnitude of estimates of error components and density dependence using generalized linear models. Process error exceeded observation error in 75% of all populations, and on average, both components of error were greater in Rangifer than in Cervus populations. Observation error differed significantly across the different observation methods, and predation and time-series length differentially affected the error components. Comparing the Bayesian model results to traditional models that do not separate error components revealed the potential for misleading inferences about sources of variation in population dynamics. More... »

PAGES

3125

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep03125

DOI

http://dx.doi.org/10.1038/srep03125

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048005918

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24201239


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Dynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "The Polar Center and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahrestani", 
        "givenName": "Farshid S.", 
        "id": "sg:person.01212366710.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212366710.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montana", 
          "id": "https://www.grid.ac/institutes/grid.253613.0", 
          "name": [
            "Wildlife Biology Program, Department of Ecosystem and Conservation Science, College of Forestry and Conservation, The University of Montana, Missoula, MT 59812, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hebblewhite", 
        "givenName": "Mark", 
        "id": "sg:person.01320712642.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320712642.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "The Polar Center and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Post", 
        "givenName": "Eric", 
        "id": "sg:person.01141223243.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141223243.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1890/11-1309.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000184904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002132934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002132934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2011.01856.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003146248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9615(2006)76[323:eddpna]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003227296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012159270-7/50003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006450231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(2006)87[1445:soefdd]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006464740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0952836904005084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007143649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10144-008-0095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007190409", 
          "https://doi.org/10.1007/s10144-008-0095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/03-0520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008104460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2916-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008664592", 
          "https://doi.org/10.1007/978-94-011-2916-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2916-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008664592", 
          "https://doi.org/10.1007/978-94-011-2916-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/03-0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009073073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-78151-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010509565", 
          "https://doi.org/10.1007/978-0-387-78151-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-78151-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010509565", 
          "https://doi.org/10.1007/978-0-387-78151-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2008.00987.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018891428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-0467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020818544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2004.00909.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021175701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-0592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021865245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/09-0442.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023550909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/ms08-1032.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024336039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/02-0039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025067153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9884.00117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027435622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1466-8238.2009.00480.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027549526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1466-8238.2009.00480.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027549526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.endeavour.2010.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027795404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101440200013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028183293", 
          "https://doi.org/10.1007/s101440200013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1995.0186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028682349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(1999)080[1322:cvppan]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028993047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jwmg.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030636039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/05-0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031900930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2664.2007.01307.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032041037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2664.2007.01307.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032041037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/03-0038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032964777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0706.2008.17250.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037259422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2002.00752.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038164234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1998.0301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038587333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-0823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038876455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9615(2002)072[0057:fpmipn]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041310315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-78151-8_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046941247", 
          "https://doi.org/10.1007/978-0-387-78151-8_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0021-8901.2004.00985.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052089432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1996.10476956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/598499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058804850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/2006-102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069284326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1938618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069662518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3545641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070367576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3802985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070459524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3803181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070459704"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Population abundance data vary widely in quality and are rarely accurate. The two main components of error in such data are observation and process error. We used Bayesian state space models to estimate the observation and process error in time-series of 55 globally distributed populations of two species, Cervus elaphus (elk/red deer) and Rangifer tarandus (caribou/reindeer). We examined variation among populations and species in the magnitude of estimates of error components and density dependence using generalized linear models. Process error exceeded observation error in 75% of all populations, and on average, both components of error were greater in Rangifer than in Cervus populations. Observation error differed significantly across the different observation methods, and predation and time-series length differentially affected the error components. Comparing the Bayesian model results to traditional models that do not separate error components revealed the potential for misleading inferences about sources of variation in population dynamics. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep03125", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3830826", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "The importance of observation versus process error in analyses of global ungulate populations", 
    "pagination": "3125", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e4b0aef8e80c34eebec9271faaa237ce2d4a1543f9fa7e51be398d99cafe75fe"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24201239"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep03125"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048005918"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep03125", 
      "https://app.dimensions.ai/details/publication/pub.1048005918"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep03125"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep03125'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep03125'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep03125'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep03125'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      79 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep03125 schema:about N03aa28872ef0418988e059f16f1dfe1f
2 N57244df292834a77bd5e23b15004b5a5
3 N8065cb937d5444508a820eba5cd06239
4 N917c7fd200f242d2b6dcfe58c3e5cc8c
5 N98d7ca05df4649a68bf6478d50780ae4
6 Ned7746ac448b4f76879605e5d506d550
7 Nf71b9cbf09de43e3b89ddf1ef83b7cc8
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N8ff09f5cf38c4b69be6194bace415131
11 schema:citation sg:pub.10.1007/978-0-387-78151-8_22
12 sg:pub.10.1007/978-0-387-78151-8_41
13 sg:pub.10.1007/978-94-011-2916-9
14 sg:pub.10.1007/s10144-008-0095-3
15 sg:pub.10.1007/s101440200013
16 https://doi.org/10.1002/jwmg.149
17 https://doi.org/10.1016/b978-012159270-7/50003-8
18 https://doi.org/10.1016/j.ecolmodel.2003.08.002
19 https://doi.org/10.1016/j.endeavour.2010.09.002
20 https://doi.org/10.1017/s0952836904005084
21 https://doi.org/10.1046/j.1365-2664.2002.00752.x
22 https://doi.org/10.1080/01621459.1996.10476956
23 https://doi.org/10.1086/598499
24 https://doi.org/10.1098/rspb.1995.0186
25 https://doi.org/10.1098/rspb.1998.0301
26 https://doi.org/10.1111/1467-9884.00117
27 https://doi.org/10.1111/j.0021-8901.2004.00985.x
28 https://doi.org/10.1111/j.1365-2656.2004.00909.x
29 https://doi.org/10.1111/j.1365-2656.2011.01856.x
30 https://doi.org/10.1111/j.1365-2664.2007.01307.x
31 https://doi.org/10.1111/j.1466-8238.2009.00480.x
32 https://doi.org/10.1111/j.1541-0420.2008.00987.x
33 https://doi.org/10.1111/j.1600-0706.2008.17250.x
34 https://doi.org/10.1890/0012-9615(2002)072[0057:fpmipn]2.0.co;2
35 https://doi.org/10.1890/0012-9615(2006)76[323:eddpna]2.0.co;2
36 https://doi.org/10.1890/0012-9658(1999)080[1322:cvppan]2.0.co;2
37 https://doi.org/10.1890/0012-9658(2006)87[1445:soefdd]2.0.co;2
38 https://doi.org/10.1890/02-0039
39 https://doi.org/10.1890/03-0009
40 https://doi.org/10.1890/03-0038
41 https://doi.org/10.1890/03-0520
42 https://doi.org/10.1890/04-0467
43 https://doi.org/10.1890/04-0592
44 https://doi.org/10.1890/04-0823
45 https://doi.org/10.1890/05-0355
46 https://doi.org/10.1890/09-0442.1
47 https://doi.org/10.1890/11-1309.1
48 https://doi.org/10.1890/ms08-1032.1
49 https://doi.org/10.2193/2006-102
50 https://doi.org/10.2307/1938618
51 https://doi.org/10.2307/3545641
52 https://doi.org/10.2307/3802985
53 https://doi.org/10.2307/3803181
54 schema:datePublished 2013-12
55 schema:datePublishedReg 2013-12-01
56 schema:description Population abundance data vary widely in quality and are rarely accurate. The two main components of error in such data are observation and process error. We used Bayesian state space models to estimate the observation and process error in time-series of 55 globally distributed populations of two species, Cervus elaphus (elk/red deer) and Rangifer tarandus (caribou/reindeer). We examined variation among populations and species in the magnitude of estimates of error components and density dependence using generalized linear models. Process error exceeded observation error in 75% of all populations, and on average, both components of error were greater in Rangifer than in Cervus populations. Observation error differed significantly across the different observation methods, and predation and time-series length differentially affected the error components. Comparing the Bayesian model results to traditional models that do not separate error components revealed the potential for misleading inferences about sources of variation in population dynamics.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N23cdebd651774fe5ba584fd71ad39011
61 Nad85ff8b0fdc48f6b8b10d8c08db584c
62 sg:journal.1045337
63 schema:name The importance of observation versus process error in analyses of global ungulate populations
64 schema:pagination 3125
65 schema:productId N00308d39fe8d4b9a8ab6f222cae5be0b
66 N6a1f15de98e94672bb233e2571e186b5
67 N96a6a5251a3a44fb9381412c47ebb4f4
68 Nae12b079d840449e8448e58cce59993f
69 Ncb4b2f40ac0242cb8d986493cd6f5744
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048005918
71 https://doi.org/10.1038/srep03125
72 schema:sdDatePublished 2019-04-10T22:19
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N2e50444d372a4e8fb77a0361d265a063
75 schema:url http://www.nature.com/articles/srep03125
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N00308d39fe8d4b9a8ab6f222cae5be0b schema:name nlm_unique_id
80 schema:value 101563288
81 rdf:type schema:PropertyValue
82 N03aa28872ef0418988e059f16f1dfe1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Animals
84 rdf:type schema:DefinedTerm
85 N232e129d49194ec786fb606f890d7941 rdf:first sg:person.01141223243.35
86 rdf:rest rdf:nil
87 N23cdebd651774fe5ba584fd71ad39011 schema:volumeNumber 3
88 rdf:type schema:PublicationVolume
89 N2e50444d372a4e8fb77a0361d265a063 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N57244df292834a77bd5e23b15004b5a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Models, Statistical
93 rdf:type schema:DefinedTerm
94 N6a1f15de98e94672bb233e2571e186b5 schema:name pubmed_id
95 schema:value 24201239
96 rdf:type schema:PropertyValue
97 N8065cb937d5444508a820eba5cd06239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Markov Chains
99 rdf:type schema:DefinedTerm
100 N8ff09f5cf38c4b69be6194bace415131 rdf:first sg:person.01212366710.29
101 rdf:rest Nd2dbbf3855684bf38d11a9938b3a2fd7
102 N917c7fd200f242d2b6dcfe58c3e5cc8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Deer
104 rdf:type schema:DefinedTerm
105 N96a6a5251a3a44fb9381412c47ebb4f4 schema:name readcube_id
106 schema:value e4b0aef8e80c34eebec9271faaa237ce2d4a1543f9fa7e51be398d99cafe75fe
107 rdf:type schema:PropertyValue
108 N98d7ca05df4649a68bf6478d50780ae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Geography
110 rdf:type schema:DefinedTerm
111 Nad85ff8b0fdc48f6b8b10d8c08db584c schema:issueNumber 1
112 rdf:type schema:PublicationIssue
113 Nae12b079d840449e8448e58cce59993f schema:name dimensions_id
114 schema:value pub.1048005918
115 rdf:type schema:PropertyValue
116 Ncb4b2f40ac0242cb8d986493cd6f5744 schema:name doi
117 schema:value 10.1038/srep03125
118 rdf:type schema:PropertyValue
119 Nd2dbbf3855684bf38d11a9938b3a2fd7 rdf:first sg:person.01320712642.58
120 rdf:rest N232e129d49194ec786fb606f890d7941
121 Ned7746ac448b4f76879605e5d506d550 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Bayes Theorem
123 rdf:type schema:DefinedTerm
124 Nf71b9cbf09de43e3b89ddf1ef83b7cc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Population Dynamics
126 rdf:type schema:DefinedTerm
127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
128 schema:name Mathematical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
131 schema:name Statistics
132 rdf:type schema:DefinedTerm
133 sg:grant.3830826 http://pending.schema.org/fundedItem sg:pub.10.1038/srep03125
134 rdf:type schema:MonetaryGrant
135 sg:journal.1045337 schema:issn 2045-2322
136 schema:name Scientific Reports
137 rdf:type schema:Periodical
138 sg:person.01141223243.35 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
139 schema:familyName Post
140 schema:givenName Eric
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141223243.35
142 rdf:type schema:Person
143 sg:person.01212366710.29 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
144 schema:familyName Ahrestani
145 schema:givenName Farshid S.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212366710.29
147 rdf:type schema:Person
148 sg:person.01320712642.58 schema:affiliation https://www.grid.ac/institutes/grid.253613.0
149 schema:familyName Hebblewhite
150 schema:givenName Mark
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320712642.58
152 rdf:type schema:Person
153 sg:pub.10.1007/978-0-387-78151-8_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010509565
154 https://doi.org/10.1007/978-0-387-78151-8_22
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/978-0-387-78151-8_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046941247
157 https://doi.org/10.1007/978-0-387-78151-8_41
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/978-94-011-2916-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008664592
160 https://doi.org/10.1007/978-94-011-2916-9
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s10144-008-0095-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007190409
163 https://doi.org/10.1007/s10144-008-0095-3
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s101440200013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028183293
166 https://doi.org/10.1007/s101440200013
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jwmg.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030636039
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/b978-012159270-7/50003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006450231
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ecolmodel.2003.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002132934
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.endeavour.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027795404
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1017/s0952836904005084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007143649
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1046/j.1365-2664.2002.00752.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038164234
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/01621459.1996.10476956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305090
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1086/598499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058804850
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1098/rspb.1995.0186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028682349
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1098/rspb.1998.0301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038587333
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/1467-9884.00117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027435622
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/j.0021-8901.2004.00985.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052089432
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/j.1365-2656.2004.00909.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021175701
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/j.1365-2656.2011.01856.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003146248
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1365-2664.2007.01307.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032041037
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/j.1466-8238.2009.00480.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027549526
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/j.1541-0420.2008.00987.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018891428
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1600-0706.2008.17250.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037259422
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1890/0012-9615(2002)072[0057:fpmipn]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041310315
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1890/0012-9615(2006)76[323:eddpna]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003227296
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1890/0012-9658(1999)080[1322:cvppan]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028993047
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1890/0012-9658(2006)87[1445:soefdd]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006464740
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1890/02-0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025067153
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1890/03-0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009073073
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1890/03-0038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032964777
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1890/03-0520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008104460
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1890/04-0467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020818544
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1890/04-0592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021865245
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1890/04-0823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038876455
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1890/05-0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031900930
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1890/09-0442.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023550909
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1890/11-1309.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000184904
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1890/ms08-1032.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024336039
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2193/2006-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069284326
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2307/1938618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069662518
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2307/3545641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070367576
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2307/3802985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070459524
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2307/3803181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070459704
243 rdf:type schema:CreativeWork
244 https://www.grid.ac/institutes/grid.253613.0 schema:alternateName University of Montana
245 schema:name Wildlife Biology Program, Department of Ecosystem and Conservation Science, College of Forestry and Conservation, The University of Montana, Missoula, MT 59812, USA
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
248 schema:name The Polar Center and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...