Next-Generation Anchor Based Phylogeny (NexABP): Constructing phylogeny from Next-generation sequencing data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Tanmoy Roychowdhury, Anchal Vishnoi, Alok Bhattacharya

ABSTRACT

Whole genome sequences are ideally suited for deriving evolutionary relationship among organisms. With the availability of Next Generation sequencing (NGS) datasets in an unprecedented scale, it will be highly desirable if phylogenetic analysis can be carried out using short read NGS data. We described here an anchor based approach NexABP for phylogenetic construction of closely related strains/isolates from NGS data. This approach can be used even in the absence of a fully assembled reference genome and works by reducing the complexity of the datasets without compromising results. NexABP was used for constructing phylogeny of different strains of some of the common pathogens, such as Mycobacterium tuberculosis, Vibrio cholera and Escherichia coli. In addition to classification into distinct lineages, NexABP could resolve inner branches and also allow statistical testing using bootstrap analysis. We believe that there are some clear advantages of using NexABP based phylogenetic analysis as compared to other methods. More... »

PAGES

2634

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep02634

DOI

http://dx.doi.org/10.1038/srep02634

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007990863

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24022334


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vibrio cholerae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jawaharlal Nehru University", 
          "id": "https://www.grid.ac/institutes/grid.10706.30", 
          "name": [
            "School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roychowdhury", 
        "givenName": "Tanmoy", 
        "id": "sg:person.01355034315.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355034315.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jawaharlal Nehru University", 
          "id": "https://www.grid.ac/institutes/grid.10706.30", 
          "name": [
            "School of Life Sciences, Jawaharlal Nehru University, New Delhi"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vishnoi", 
        "givenName": "Anchal", 
        "id": "sg:person.0666622130.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666622130.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jawaharlal Nehru University", 
          "id": "https://www.grid.ac/institutes/grid.10706.30", 
          "name": [
            "School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi", 
            "School of Life Sciences, Jawaharlal Nehru University, New Delhi"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharya", 
        "givenName": "Alok", 
        "id": "sg:person.01200174224.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200174224.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/iai.68.12.7180-7185.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000890051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.12.1246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001228928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1012928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002240176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.052548299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002264494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.21.4218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002742894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006290092", 
          "https://doi.org/10.1186/1471-2164-14-404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0060311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007027373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.3.502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007526298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008104188", 
          "https://doi.org/10.1038/ng.590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008104188", 
          "https://doi.org/10.1038/ng.590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012894299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013206766", 
          "https://doi.org/10.1038/nature10392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.9.081307.164359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015853776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0014159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018972574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0511240103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021145534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022345267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471250953.bi0602s01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028385178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029298382", 
          "https://doi.org/10.1038/nmeth.1935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030907104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1000600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033367668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/5052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038696050", 
          "https://doi.org/10.1038/5052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/5052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038696050", 
          "https://doi.org/10.1038/5052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-9-137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043137877", 
          "https://doi.org/10.1186/1471-2148-9-137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.9.9.868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046849268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.078212.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047542880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0907787106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048599635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050692349", 
          "https://doi.org/10.1186/1471-2105-8-460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Whole genome sequences are ideally suited for deriving evolutionary relationship among organisms. With the availability of Next Generation sequencing (NGS) datasets in an unprecedented scale, it will be highly desirable if phylogenetic analysis can be carried out using short read NGS data. We described here an anchor based approach NexABP for phylogenetic construction of closely related strains/isolates from NGS data. This approach can be used even in the absence of a fully assembled reference genome and works by reducing the complexity of the datasets without compromising results. NexABP was used for constructing phylogeny of different strains of some of the common pathogens, such as Mycobacterium tuberculosis, Vibrio cholera and Escherichia coli. In addition to classification into distinct lineages, NexABP could resolve inner branches and also allow statistical testing using bootstrap analysis. We believe that there are some clear advantages of using NexABP based phylogenetic analysis as compared to other methods. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep02634", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Next-Generation Anchor Based Phylogeny (NexABP): Constructing phylogeny from Next-generation sequencing data", 
    "pagination": "2634", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "261196d70d6e5b3aed03d3097fff5e2d27a1ff34a381620e963534eb1582e0c8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24022334"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep02634"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007990863"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep02634", 
      "https://app.dimensions.ai/details/publication/pub.1007990863"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep02634"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep02634'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep02634'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep02634'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep02634'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      70 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep02634 schema:about N055fc9ba06684f789bc9450c2b090287
2 N10a477414c604c0c91fc57acb2e8b8e9
3 N244600178856489d9a9afa323964b329
4 N2523fb51aa084c138f3c23347b03d060
5 N2b51ca9288144e008544b5b0b568828a
6 N2b9bb48518274c1f81376c67b22f5a76
7 N6016e9c0c068436a94ea3cff3305e17a
8 N7674607ed93c42d39475677588833ec6
9 N7d337ef921a447d29eb3b07dfdc4886d
10 Nb90208a536ec4187a6dd80d8a51f0917
11 Nde29523ee1b9475e894334f5d4758764
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N7b5a1485b766467ea6481121ac9fd9d2
15 schema:citation sg:pub.10.1038/5052
16 sg:pub.10.1038/nature10392
17 sg:pub.10.1038/ng.590
18 sg:pub.10.1038/nmeth.1923
19 sg:pub.10.1038/nmeth.1935
20 sg:pub.10.1186/1471-2105-8-460
21 sg:pub.10.1186/1471-2148-9-137
22 sg:pub.10.1186/1471-2164-14-404
23 sg:pub.10.1186/gb-2009-10-3-r25
24 https://doi.org/10.1002/0471250953.bi0602s01
25 https://doi.org/10.1056/nejmoa1012928
26 https://doi.org/10.1073/pnas.0511240103
27 https://doi.org/10.1073/pnas.052548299
28 https://doi.org/10.1073/pnas.0907787106
29 https://doi.org/10.1093/bioinformatics/17.12.1246
30 https://doi.org/10.1093/bioinformatics/18.3.502
31 https://doi.org/10.1093/bioinformatics/btp352
32 https://doi.org/10.1093/nar/25.17.3389
33 https://doi.org/10.1093/nar/27.21.4218
34 https://doi.org/10.1093/nar/gkm209
35 https://doi.org/10.1093/nar/gkt003
36 https://doi.org/10.1093/oxfordjournals.molbev.a040454
37 https://doi.org/10.1101/gr.078212.108
38 https://doi.org/10.1101/gr.9.9.868
39 https://doi.org/10.1128/iai.68.12.7180-7185.2000
40 https://doi.org/10.1146/annurev.genom.9.081307.164359
41 https://doi.org/10.1214/aos/1176344552
42 https://doi.org/10.1371/journal.pbio.0060311
43 https://doi.org/10.1371/journal.pone.0014159
44 https://doi.org/10.1371/journal.ppat.1000600
45 schema:datePublished 2013-12
46 schema:datePublishedReg 2013-12-01
47 schema:description Whole genome sequences are ideally suited for deriving evolutionary relationship among organisms. With the availability of Next Generation sequencing (NGS) datasets in an unprecedented scale, it will be highly desirable if phylogenetic analysis can be carried out using short read NGS data. We described here an anchor based approach NexABP for phylogenetic construction of closely related strains/isolates from NGS data. This approach can be used even in the absence of a fully assembled reference genome and works by reducing the complexity of the datasets without compromising results. NexABP was used for constructing phylogeny of different strains of some of the common pathogens, such as Mycobacterium tuberculosis, Vibrio cholera and Escherichia coli. In addition to classification into distinct lineages, NexABP could resolve inner branches and also allow statistical testing using bootstrap analysis. We believe that there are some clear advantages of using NexABP based phylogenetic analysis as compared to other methods.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N0e66d9048c034256b3a94b770a7afa5f
52 Na2a5ebd3d2bd445ba22051e18fd2abb0
53 sg:journal.1045337
54 schema:name Next-Generation Anchor Based Phylogeny (NexABP): Constructing phylogeny from Next-generation sequencing data
55 schema:pagination 2634
56 schema:productId N218e7affb0364a2980492c27f7bf151c
57 N4870190ef28d474d904f79cda149d603
58 N8c4ec774830b41d1a3fa160476b42bbe
59 Nbc3041d183f8469699aac3f25b946e0d
60 Ndd96428db2144caba1b84748da44332b
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007990863
62 https://doi.org/10.1038/srep02634
63 schema:sdDatePublished 2019-04-11T00:03
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nf050728b7e8e4733a4389d0f0c1c7ee6
66 schema:url http://www.nature.com/articles/srep02634
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N055fc9ba06684f789bc9450c2b090287 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Genomics
72 rdf:type schema:DefinedTerm
73 N0ab4277d43134080970ca582f37a40d3 rdf:first sg:person.0666622130.74
74 rdf:rest N52667a8f77054e5fa71b4fa926a2a1e3
75 N0e66d9048c034256b3a94b770a7afa5f schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N10a477414c604c0c91fc57acb2e8b8e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Algorithms
79 rdf:type schema:DefinedTerm
80 N218e7affb0364a2980492c27f7bf151c schema:name dimensions_id
81 schema:value pub.1007990863
82 rdf:type schema:PropertyValue
83 N244600178856489d9a9afa323964b329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 N2523fb51aa084c138f3c23347b03d060 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name High-Throughput Nucleotide Sequencing
88 rdf:type schema:DefinedTerm
89 N2b51ca9288144e008544b5b0b568828a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Phylogeny
91 rdf:type schema:DefinedTerm
92 N2b9bb48518274c1f81376c67b22f5a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Escherichia coli
94 rdf:type schema:DefinedTerm
95 N4870190ef28d474d904f79cda149d603 schema:name readcube_id
96 schema:value 261196d70d6e5b3aed03d3097fff5e2d27a1ff34a381620e963534eb1582e0c8
97 rdf:type schema:PropertyValue
98 N52667a8f77054e5fa71b4fa926a2a1e3 rdf:first sg:person.01200174224.13
99 rdf:rest rdf:nil
100 N6016e9c0c068436a94ea3cff3305e17a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Vibrio cholerae
102 rdf:type schema:DefinedTerm
103 N7674607ed93c42d39475677588833ec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Genome
105 rdf:type schema:DefinedTerm
106 N7b5a1485b766467ea6481121ac9fd9d2 rdf:first sg:person.01355034315.27
107 rdf:rest N0ab4277d43134080970ca582f37a40d3
108 N7d337ef921a447d29eb3b07dfdc4886d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Computational Biology
110 rdf:type schema:DefinedTerm
111 N8c4ec774830b41d1a3fa160476b42bbe schema:name pubmed_id
112 schema:value 24022334
113 rdf:type schema:PropertyValue
114 Na2a5ebd3d2bd445ba22051e18fd2abb0 schema:volumeNumber 3
115 rdf:type schema:PublicationVolume
116 Nb90208a536ec4187a6dd80d8a51f0917 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Mycobacterium tuberculosis
118 rdf:type schema:DefinedTerm
119 Nbc3041d183f8469699aac3f25b946e0d schema:name nlm_unique_id
120 schema:value 101563288
121 rdf:type schema:PropertyValue
122 Ndd96428db2144caba1b84748da44332b schema:name doi
123 schema:value 10.1038/srep02634
124 rdf:type schema:PropertyValue
125 Nde29523ee1b9475e894334f5d4758764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Sequence Analysis, DNA
127 rdf:type schema:DefinedTerm
128 Nf050728b7e8e4733a4389d0f0c1c7ee6 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biological Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
134 schema:name Genetics
135 rdf:type schema:DefinedTerm
136 sg:journal.1045337 schema:issn 2045-2322
137 schema:name Scientific Reports
138 rdf:type schema:Periodical
139 sg:person.01200174224.13 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
140 schema:familyName Bhattacharya
141 schema:givenName Alok
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200174224.13
143 rdf:type schema:Person
144 sg:person.01355034315.27 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
145 schema:familyName Roychowdhury
146 schema:givenName Tanmoy
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355034315.27
148 rdf:type schema:Person
149 sg:person.0666622130.74 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
150 schema:familyName Vishnoi
151 schema:givenName Anchal
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666622130.74
153 rdf:type schema:Person
154 sg:pub.10.1038/5052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038696050
155 https://doi.org/10.1038/5052
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature10392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013206766
158 https://doi.org/10.1038/nature10392
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ng.590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008104188
161 https://doi.org/10.1038/ng.590
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
164 https://doi.org/10.1038/nmeth.1923
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nmeth.1935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029298382
167 https://doi.org/10.1038/nmeth.1935
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2105-8-460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050692349
170 https://doi.org/10.1186/1471-2105-8-460
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2148-9-137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043137877
173 https://doi.org/10.1186/1471-2148-9-137
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2164-14-404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006290092
176 https://doi.org/10.1186/1471-2164-14-404
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
179 https://doi.org/10.1186/gb-2009-10-3-r25
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/0471250953.bi0602s01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028385178
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1056/nejmoa1012928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002240176
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.0511240103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021145534
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.052548299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002264494
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.0907787106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048599635
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/17.12.1246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001228928
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/18.3.502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007526298
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/nar/27.21.4218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002742894
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/nar/gkm209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022345267
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/nar/gkt003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030907104
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1101/gr.9.9.868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046849268
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1128/iai.68.12.7180-7185.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000890051
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1146/annurev.genom.9.081307.164359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015853776
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1214/aos/1176344552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012894299
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pbio.0060311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007027373
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0014159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018972574
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1371/journal.ppat.1000600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033367668
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.10706.30 schema:alternateName Jawaharlal Nehru University
224 schema:name School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi
225 School of Life Sciences, Jawaharlal Nehru University, New Delhi
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...