Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06-04

AUTHORS

Rachel L. Moseley, Friedemann Pulvermüller, Yury Shtyrov

ABSTRACT

Although semantic processing has traditionally been associated with brain responses maximal at 350–400 ms, recent studies reported that words of different semantic types elicit topographically distinct brain responses substantially earlier, at 100–200 ms. These earlier responses have, however, been achieved using insufficiently precise source localisation techniques, therefore casting doubt on reported differences in brain generators. Here, we used high-density MEG-EEG recordings in combination with individual MRI images and state-of-the-art source reconstruction techniques to compare localised early activations elicited by words from different semantic categories in different cortical areas. Reliable neurophysiological word-category dissociations emerged bilaterally at ~ 150 ms, at which point action-related words most strongly activated frontocentral motor areas and visual object-words occipitotemporal cortex. These data now show that different cortical areas are activated rapidly by words with different meanings and that aspects of their category-specific semantics is reflected by dissociating neurophysiological sources in motor and visual brain systems. More... »

PAGES

1928

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep01928

DOI

http://dx.doi.org/10.1038/srep01928

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013638894

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23732850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Concept Formation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evoked Potentials, Somatosensory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetoencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photic Stimulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semantics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Cognition and Brain Sciences Unit, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.415036.5", 
          "name": [
            "MRC Cognition and Brain Sciences Unit, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moseley", 
        "givenName": "Rachel L.", 
        "id": "sg:person.0770207750.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770207750.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universit\u00e4t Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universit\u00e4t Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pulverm\u00fcller", 
        "givenName": "Friedemann", 
        "id": "sg:person.01214737170.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214737170.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Cognition and Brain Sciences Unit, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.415036.5", 
          "name": [
            "MRC Cognition and Brain Sciences Unit, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shtyrov", 
        "givenName": "Yury", 
        "id": "sg:person.01340206244.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340206244.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrn2811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012565042", 
          "https://doi.org/10.1038/nrn2811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-67437-2_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089509626", 
          "https://doi.org/10.1007/978-3-642-67437-2_19"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06-04", 
    "datePublishedReg": "2013-06-04", 
    "description": "Although semantic processing has traditionally been associated with brain responses maximal at 350\u2013400\u2005ms, recent studies reported that words of different semantic types elicit topographically distinct brain responses substantially earlier, at 100\u2013200\u2005ms. These earlier responses have, however, been achieved using insufficiently precise source localisation techniques, therefore casting doubt on reported differences in brain generators. Here, we used high-density MEG-EEG recordings in combination with individual MRI images and state-of-the-art source reconstruction techniques to compare localised early activations elicited by words from different semantic categories in different cortical areas. Reliable neurophysiological word-category dissociations emerged bilaterally at ~ 150\u2005ms, at which point action-related words most strongly activated frontocentral motor areas and visual object-words occipitotemporal cortex. These data now show that different cortical areas are activated rapidly by words with different meanings and that aspects of their category-specific semantics is reflected by dissociating neurophysiological sources in motor and visual brain systems.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep01928", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2780089", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "different cortical areas", 
      "cortical areas", 
      "brain responses", 
      "individual MRI images", 
      "motor area", 
      "distinct brain responses", 
      "action-related words", 
      "brain generators", 
      "early activation", 
      "early response", 
      "neurophysiological sources", 
      "occipitotemporal cortex", 
      "brain systems", 
      "MEG-EEG recordings", 
      "reported differences", 
      "Recent studies", 
      "MRI images", 
      "response", 
      "cortex", 
      "ms", 
      "different semantic categories", 
      "reconstruction technique", 
      "semantic processing", 
      "activation", 
      "semantic categories", 
      "recordings", 
      "source reconstruction techniques", 
      "words", 
      "categories", 
      "conceptual categories", 
      "differences", 
      "localisation techniques", 
      "study", 
      "area", 
      "different meanings", 
      "combination", 
      "data", 
      "types", 
      "technique", 
      "motor", 
      "semantic types", 
      "doubt", 
      "processing", 
      "different semantic types", 
      "aspects", 
      "dissociation", 
      "meaning", 
      "semantics", 
      "spots", 
      "state", 
      "system", 
      "images", 
      "source", 
      "dissociates", 
      "generator"
    ], 
    "name": "Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms", 
    "pagination": "1928", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013638894"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep01928"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23732850"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep01928", 
      "https://app.dimensions.ai/details/publication/pub.1013638894"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep01928"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep01928'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep01928'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep01928'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep01928'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      96 URIs      86 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep01928 schema:about N0ab8ebb3dfce4f6f8fd345fb316b55c8
2 N2c2ceeba74254c23acd1f6d95b1f5aef
3 N3371d0d9c002481ea67141187787b1e6
4 N708dab4e076a42a8819f4b487420434b
5 N847d5a3b340a44daba9f459ef3fd2bf4
6 N92742ffe96144b30a53651f0c7ed779a
7 N9b3796b5358e41b88b8757ab743b645a
8 Na4dfed83f46a431f87d41cf38856b603
9 Na55dea093bbd4dcabeafcb5e0bc34567
10 Na842d038956d4776bf298f7a4f1a85fd
11 Nc140a39b6a414a049483c7563dd7389b
12 Nca3c5faa588a4073a0f752a0a01413d8
13 Ne1dbfd9ae7bc46ddb4ca5fb5975648c7
14 Ne91e357e76d541d488891d84be0e30b7
15 anzsrc-for:11
16 anzsrc-for:1109
17 schema:author Nd41a935fec4a42d1ba993ac26dd4a768
18 schema:citation sg:pub.10.1007/978-3-642-67437-2_19
19 sg:pub.10.1038/nrn2811
20 schema:datePublished 2013-06-04
21 schema:datePublishedReg 2013-06-04
22 schema:description Although semantic processing has traditionally been associated with brain responses maximal at 350–400 ms, recent studies reported that words of different semantic types elicit topographically distinct brain responses substantially earlier, at 100–200 ms. These earlier responses have, however, been achieved using insufficiently precise source localisation techniques, therefore casting doubt on reported differences in brain generators. Here, we used high-density MEG-EEG recordings in combination with individual MRI images and state-of-the-art source reconstruction techniques to compare localised early activations elicited by words from different semantic categories in different cortical areas. Reliable neurophysiological word-category dissociations emerged bilaterally at ~ 150 ms, at which point action-related words most strongly activated frontocentral motor areas and visual object-words occipitotemporal cortex. These data now show that different cortical areas are activated rapidly by words with different meanings and that aspects of their category-specific semantics is reflected by dissociating neurophysiological sources in motor and visual brain systems.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf Nbe51df79ed15481bbd543dc4a5c14bd1
26 Nc9cbd657063f4f49ac54c0b980aa7271
27 sg:journal.1045337
28 schema:keywords MEG-EEG recordings
29 MRI images
30 Recent studies
31 action-related words
32 activation
33 area
34 aspects
35 brain generators
36 brain responses
37 brain systems
38 categories
39 combination
40 conceptual categories
41 cortex
42 cortical areas
43 data
44 differences
45 different cortical areas
46 different meanings
47 different semantic categories
48 different semantic types
49 dissociates
50 dissociation
51 distinct brain responses
52 doubt
53 early activation
54 early response
55 generator
56 images
57 individual MRI images
58 localisation techniques
59 meaning
60 motor
61 motor area
62 ms
63 neurophysiological sources
64 occipitotemporal cortex
65 processing
66 reconstruction technique
67 recordings
68 reported differences
69 response
70 semantic categories
71 semantic processing
72 semantic types
73 semantics
74 source
75 source reconstruction techniques
76 spots
77 state
78 study
79 system
80 technique
81 types
82 words
83 schema:name Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms
84 schema:pagination 1928
85 schema:productId N10a5307738dc4766ae57319216d8f75a
86 N7d41172697c54622a7efff3704806b0c
87 Nb0ae69bcb44b4f9e8fc173827521ceb2
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013638894
89 https://doi.org/10.1038/srep01928
90 schema:sdDatePublished 2022-11-24T20:55
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N7ea03797ccb74e28a9d2fd57a18c4680
93 schema:url https://doi.org/10.1038/srep01928
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0ab8ebb3dfce4f6f8fd345fb316b55c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Magnetic Resonance Imaging
99 rdf:type schema:DefinedTerm
100 N10a5307738dc4766ae57319216d8f75a schema:name dimensions_id
101 schema:value pub.1013638894
102 rdf:type schema:PropertyValue
103 N2c2ceeba74254c23acd1f6d95b1f5aef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Brain
105 rdf:type schema:DefinedTerm
106 N3371d0d9c002481ea67141187787b1e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Photic Stimulation
108 rdf:type schema:DefinedTerm
109 N5803cba5f1b04766ac8f6f4a6a8deaec rdf:first sg:person.01340206244.95
110 rdf:rest rdf:nil
111 N708dab4e076a42a8819f4b487420434b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Electroencephalography
113 rdf:type schema:DefinedTerm
114 N7d41172697c54622a7efff3704806b0c schema:name pubmed_id
115 schema:value 23732850
116 rdf:type schema:PropertyValue
117 N7ea03797ccb74e28a9d2fd57a18c4680 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N847d5a3b340a44daba9f459ef3fd2bf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Adult
121 rdf:type schema:DefinedTerm
122 N92742ffe96144b30a53651f0c7ed779a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Female
124 rdf:type schema:DefinedTerm
125 N9b3796b5358e41b88b8757ab743b645a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Semantics
127 rdf:type schema:DefinedTerm
128 Na4dfed83f46a431f87d41cf38856b603 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Magnetoencephalography
130 rdf:type schema:DefinedTerm
131 Na55dea093bbd4dcabeafcb5e0bc34567 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Male
133 rdf:type schema:DefinedTerm
134 Na842d038956d4776bf298f7a4f1a85fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Brain Mapping
136 rdf:type schema:DefinedTerm
137 Nab60d2c7122540d099ca36215eb0284b rdf:first sg:person.01214737170.14
138 rdf:rest N5803cba5f1b04766ac8f6f4a6a8deaec
139 Nb0ae69bcb44b4f9e8fc173827521ceb2 schema:name doi
140 schema:value 10.1038/srep01928
141 rdf:type schema:PropertyValue
142 Nbe51df79ed15481bbd543dc4a5c14bd1 schema:volumeNumber 3
143 rdf:type schema:PublicationVolume
144 Nc140a39b6a414a049483c7563dd7389b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Evoked Potentials, Somatosensory
146 rdf:type schema:DefinedTerm
147 Nc9cbd657063f4f49ac54c0b980aa7271 schema:issueNumber 1
148 rdf:type schema:PublicationIssue
149 Nca3c5faa588a4073a0f752a0a01413d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Image Processing, Computer-Assisted
151 rdf:type schema:DefinedTerm
152 Nd41a935fec4a42d1ba993ac26dd4a768 rdf:first sg:person.0770207750.01
153 rdf:rest Nab60d2c7122540d099ca36215eb0284b
154 Ne1dbfd9ae7bc46ddb4ca5fb5975648c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Concept Formation
156 rdf:type schema:DefinedTerm
157 Ne91e357e76d541d488891d84be0e30b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Humans
159 rdf:type schema:DefinedTerm
160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
161 schema:name Medical and Health Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
164 schema:name Neurosciences
165 rdf:type schema:DefinedTerm
166 sg:grant.2780089 http://pending.schema.org/fundedItem sg:pub.10.1038/srep01928
167 rdf:type schema:MonetaryGrant
168 sg:journal.1045337 schema:issn 2045-2322
169 schema:name Scientific Reports
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01214737170.14 schema:affiliation grid-institutes:grid.14095.39
173 schema:familyName Pulvermüller
174 schema:givenName Friedemann
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214737170.14
176 rdf:type schema:Person
177 sg:person.01340206244.95 schema:affiliation grid-institutes:grid.415036.5
178 schema:familyName Shtyrov
179 schema:givenName Yury
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340206244.95
181 rdf:type schema:Person
182 sg:person.0770207750.01 schema:affiliation grid-institutes:grid.415036.5
183 schema:familyName Moseley
184 schema:givenName Rachel L.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770207750.01
186 rdf:type schema:Person
187 sg:pub.10.1007/978-3-642-67437-2_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089509626
188 https://doi.org/10.1007/978-3-642-67437-2_19
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nrn2811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012565042
191 https://doi.org/10.1038/nrn2811
192 rdf:type schema:CreativeWork
193 grid-institutes:grid.14095.39 schema:alternateName Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany
194 schema:name Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany
195 rdf:type schema:Organization
196 grid-institutes:grid.415036.5 schema:alternateName MRC Cognition and Brain Sciences Unit, Cambridge, UK
197 schema:name MRC Cognition and Brain Sciences Unit, Cambridge, UK
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...