Dispersion-cancelled biological imaging with quantum-inspired interferometry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, K. J. Resch

ABSTRACT

Quantum information science promises transformative impact over a range of key technologies in computing, communication, and sensing. A prominent example uses entangled photons to overcome the resolution-degrading effects of dispersion in the medical-imaging technology, optical coherence tomography. The quantum solution introduces new challenges: inherently low signal and artifacts, additional unwanted signal features. It has recently been shown that entanglement is not a requirement for automatic dispersion cancellation. Such classical techniques could solve the low-signal problem, however they all still suffer from artifacts. Here, we introduce a method of chirped-pulse interferometry based on shaped laser pulses, and use it to produce artifact-free, high-resolution, dispersion-cancelled images of the internal structure of a biological sample. Our work fulfills one of the promises of quantum technologies: automatic-dispersion-cancellation interferometry in biomedical imaging. It also shows how subtle differences between a quantum technique and its classical analogue may have unforeseen, yet beneficial, consequences. More... »

PAGES

1582

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep01582

DOI

http://dx.doi.org/10.1038/srep01582

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012381749

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23545597


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Failure Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Interferometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nephelometry and Turbidimetry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantum Theory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Refractometry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 CANADA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazurek", 
        "givenName": "M. D.", 
        "id": "sg:person.0713364206.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713364206.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 CANADA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiter", 
        "givenName": "K. M.", 
        "id": "sg:person.01064435172.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064435172.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 CANADA", 
            "Research Institute of Molecular Pathology (IMP) & Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 7-9, 1030 Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prevedel", 
        "givenName": "R.", 
        "id": "sg:person.0756762672.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756762672.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna Center for Quantum Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.499369.8", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 CANADA", 
            "Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaltenbaek", 
        "givenName": "R.", 
        "id": "sg:person.0576270073.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576270073.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 CANADA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Resch", 
        "givenName": "K. J.", 
        "id": "sg:person.01362531266.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362531266.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.optcom.2008.11.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005312810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006196600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006196600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.008760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006450301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009708234", 
          "https://doi.org/10.1038/nphys1255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.2793736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014201272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.825089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016137372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.008797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017094203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.008951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026064979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.053817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.053817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2006.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038546260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041795676", 
          "https://doi.org/10.1038/nphys1093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(87)90011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042706424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(87)90011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042706424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.243601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044305161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.243601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044305161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/66/2/204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046119441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-002-0901-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051199938", 
          "https://doi.org/10.1007/s00340-002-0901-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.041601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.041601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1150614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057679184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.6659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.6659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.183601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.183601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.14385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.014967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065186396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.003818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065189826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.27.001800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.001001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065228406"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Quantum information science promises transformative impact over a range of key technologies in computing, communication, and sensing. A prominent example uses entangled photons to overcome the resolution-degrading effects of dispersion in the medical-imaging technology, optical coherence tomography. The quantum solution introduces new challenges: inherently low signal and artifacts, additional unwanted signal features. It has recently been shown that entanglement is not a requirement for automatic dispersion cancellation. Such classical techniques could solve the low-signal problem, however they all still suffer from artifacts. Here, we introduce a method of chirped-pulse interferometry based on shaped laser pulses, and use it to produce artifact-free, high-resolution, dispersion-cancelled images of the internal structure of a biological sample. Our work fulfills one of the promises of quantum technologies: automatic-dispersion-cancellation interferometry in biomedical imaging. It also shows how subtle differences between a quantum technique and its classical analogue may have unforeseen, yet beneficial, consequences.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep01582", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Dispersion-cancelled biological imaging with quantum-inspired interferometry", 
    "pagination": "1582", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3afd7c54b2ebfb65f8aea4da25b98b446a592a6032d7801e25720f9a7c028d5a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23545597"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep01582"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012381749"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep01582", 
      "https://app.dimensions.ai/details/publication/pub.1012381749"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2013/130402/srep01582/full/srep01582.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep01582'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep01582'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep01582'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep01582'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      63 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep01582 schema:about N06e4acee57cc46ae9912211a93c40236
2 N2782e9f0a59947c5bffa57662e581a86
3 N62cf20be9cb0443db02b1504457dae7f
4 N669aaba0286e4c888a2a62b07159c161
5 Nac9e18f5c9d246e3a9d25e229f392260
6 Ncadfd939d4254fcb9548acda4c13ab3f
7 Nfd8624cc843f4b3facce876c5ea17a87
8 anzsrc-for:02
9 anzsrc-for:0299
10 schema:author N89bf5ecd12564eacb4a9ccad95eff0d7
11 schema:citation sg:pub.10.1007/s00340-002-0901-0
12 sg:pub.10.1038/nphys1093
13 sg:pub.10.1038/nphys1255
14 https://doi.org/10.1016/0030-4018(87)90011-3
15 https://doi.org/10.1016/j.optcom.2006.07.050
16 https://doi.org/10.1016/j.optcom.2008.11.061
17 https://doi.org/10.1063/1.1150614
18 https://doi.org/10.1088/0034-4885/66/2/204
19 https://doi.org/10.1103/physreva.45.6659
20 https://doi.org/10.1103/physreva.57.567
21 https://doi.org/10.1103/physreva.65.053817
22 https://doi.org/10.1103/physreva.74.041601
23 https://doi.org/10.1103/physrevlett.100.183601
24 https://doi.org/10.1103/physrevlett.102.243601
25 https://doi.org/10.1103/physrevlett.59.2044
26 https://doi.org/10.1103/physrevlett.68.2421
27 https://doi.org/10.1103/physrevlett.91.083601
28 https://doi.org/10.1109/3.14385
29 https://doi.org/10.1117/1.2793736
30 https://doi.org/10.1117/12.825089
31 https://doi.org/10.1364/oe.15.008760
32 https://doi.org/10.1364/oe.15.008797
33 https://doi.org/10.1364/oe.15.014967
34 https://doi.org/10.1364/oe.17.003818
35 https://doi.org/10.1364/ol.27.001800
36 https://doi.org/10.1364/ol.35.001001
37 https://doi.org/10.1364/opex.13.008951
38 schema:datePublished 2013-12
39 schema:datePublishedReg 2013-12-01
40 schema:description Quantum information science promises transformative impact over a range of key technologies in computing, communication, and sensing. A prominent example uses entangled photons to overcome the resolution-degrading effects of dispersion in the medical-imaging technology, optical coherence tomography. The quantum solution introduces new challenges: inherently low signal and artifacts, additional unwanted signal features. It has recently been shown that entanglement is not a requirement for automatic dispersion cancellation. Such classical techniques could solve the low-signal problem, however they all still suffer from artifacts. Here, we introduce a method of chirped-pulse interferometry based on shaped laser pulses, and use it to produce artifact-free, high-resolution, dispersion-cancelled images of the internal structure of a biological sample. Our work fulfills one of the promises of quantum technologies: automatic-dispersion-cancellation interferometry in biomedical imaging. It also shows how subtle differences between a quantum technique and its classical analogue may have unforeseen, yet beneficial, consequences.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N136a2d93246a489ab053d26331e15b34
45 Nb1fc962d3395461ebbffa73d0ec23a8a
46 sg:journal.1045337
47 schema:name Dispersion-cancelled biological imaging with quantum-inspired interferometry
48 schema:pagination 1582
49 schema:productId N0918484573c0409aa96c075cb093f47b
50 N2dc54c24e60b4933b5a3188a68b9000d
51 N700c77af909e457ab333d6fc50e01b63
52 N802d8e1b25db48cea898edbf56b60f9d
53 Nd0c5897d5c544f0e95e1b0d018bbf75c
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012381749
55 https://doi.org/10.1038/srep01582
56 schema:sdDatePublished 2019-04-10T22:19
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N68940bafad944ee8bcc64192f9568104
59 schema:url http://www.nature.com/srep/2013/130402/srep01582/full/srep01582.html
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N06e4acee57cc46ae9912211a93c40236 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Interferometry
65 rdf:type schema:DefinedTerm
66 N0918484573c0409aa96c075cb093f47b schema:name readcube_id
67 schema:value 3afd7c54b2ebfb65f8aea4da25b98b446a592a6032d7801e25720f9a7c028d5a
68 rdf:type schema:PropertyValue
69 N1345d21267c44898bdc2e7592b0455a5 rdf:first sg:person.01064435172.60
70 rdf:rest N248db467c39d47ab925b90a9f1f53f40
71 N136a2d93246a489ab053d26331e15b34 schema:volumeNumber 3
72 rdf:type schema:PublicationVolume
73 N22bd1a8f62b946fc9d7000f662a00849 rdf:first sg:person.01362531266.25
74 rdf:rest rdf:nil
75 N248db467c39d47ab925b90a9f1f53f40 rdf:first sg:person.0756762672.96
76 rdf:rest Na242e579978145b7b7abb84cdfca87d6
77 N2782e9f0a59947c5bffa57662e581a86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Image Enhancement
79 rdf:type schema:DefinedTerm
80 N2dc54c24e60b4933b5a3188a68b9000d schema:name nlm_unique_id
81 schema:value 101563288
82 rdf:type schema:PropertyValue
83 N62cf20be9cb0443db02b1504457dae7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Nephelometry and Turbidimetry
85 rdf:type schema:DefinedTerm
86 N669aaba0286e4c888a2a62b07159c161 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Equipment Design
88 rdf:type schema:DefinedTerm
89 N68940bafad944ee8bcc64192f9568104 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N700c77af909e457ab333d6fc50e01b63 schema:name pubmed_id
92 schema:value 23545597
93 rdf:type schema:PropertyValue
94 N802d8e1b25db48cea898edbf56b60f9d schema:name doi
95 schema:value 10.1038/srep01582
96 rdf:type schema:PropertyValue
97 N89bf5ecd12564eacb4a9ccad95eff0d7 rdf:first sg:person.0713364206.82
98 rdf:rest N1345d21267c44898bdc2e7592b0455a5
99 Na242e579978145b7b7abb84cdfca87d6 rdf:first sg:person.0576270073.20
100 rdf:rest N22bd1a8f62b946fc9d7000f662a00849
101 Nac9e18f5c9d246e3a9d25e229f392260 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Refractometry
103 rdf:type schema:DefinedTerm
104 Nb1fc962d3395461ebbffa73d0ec23a8a schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 Ncadfd939d4254fcb9548acda4c13ab3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Equipment Failure Analysis
108 rdf:type schema:DefinedTerm
109 Nd0c5897d5c544f0e95e1b0d018bbf75c schema:name dimensions_id
110 schema:value pub.1012381749
111 rdf:type schema:PropertyValue
112 Nfd8624cc843f4b3facce876c5ea17a87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Quantum Theory
114 rdf:type schema:DefinedTerm
115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
119 schema:name Other Physical Sciences
120 rdf:type schema:DefinedTerm
121 sg:journal.1045337 schema:issn 2045-2322
122 schema:name Scientific Reports
123 rdf:type schema:Periodical
124 sg:person.01064435172.60 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
125 schema:familyName Schreiter
126 schema:givenName K. M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064435172.60
128 rdf:type schema:Person
129 sg:person.01362531266.25 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
130 schema:familyName Resch
131 schema:givenName K. J.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362531266.25
133 rdf:type schema:Person
134 sg:person.0576270073.20 schema:affiliation https://www.grid.ac/institutes/grid.499369.8
135 schema:familyName Kaltenbaek
136 schema:givenName R.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576270073.20
138 rdf:type schema:Person
139 sg:person.0713364206.82 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
140 schema:familyName Mazurek
141 schema:givenName M. D.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713364206.82
143 rdf:type schema:Person
144 sg:person.0756762672.96 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
145 schema:familyName Prevedel
146 schema:givenName R.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756762672.96
148 rdf:type schema:Person
149 sg:pub.10.1007/s00340-002-0901-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051199938
150 https://doi.org/10.1007/s00340-002-0901-0
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nphys1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041795676
153 https://doi.org/10.1038/nphys1093
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nphys1255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009708234
156 https://doi.org/10.1038/nphys1255
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0030-4018(87)90011-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042706424
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.optcom.2006.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038546260
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.optcom.2008.11.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005312810
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.1150614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057679184
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0034-4885/66/2/204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046119441
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physreva.45.6659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485418
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physreva.57.567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493866
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physreva.65.053817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028958800
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreva.74.041601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365053
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.100.183601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753397
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.102.243601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044305161
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.59.2044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795808
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.68.2421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804447
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.91.083601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006196600
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/3.14385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146817
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1117/1.2793736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014201272
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1117/12.825089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016137372
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1364/oe.15.008760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006450301
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1364/oe.15.008797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017094203
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1364/oe.15.014967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065186396
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1364/oe.17.003818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065189826
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1364/ol.27.001800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220622
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1364/ol.35.001001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065228406
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1364/opex.13.008951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026064979
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
207 schema:name Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 CANADA
208 Research Institute of Molecular Pathology (IMP) & Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 7-9, 1030 Vienna, Austria
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
211 schema:name Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 CANADA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.499369.8 schema:alternateName Vienna Center for Quantum Science and Technology
214 schema:name Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 CANADA
215 Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Vienna, Austria
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...