Core-shell silicon nanowire solar cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

M. M. Adachi, M. P. Anantram, K. S. Karim

ABSTRACT

Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices. More... »

PAGES

1546

References to SciGraph publications

  • 2005-06. Nanowire dye-sensitized solar cells in NATURE MATERIALS
  • 1999-08. Potential of amorphous silicon for solar cells in APPLIED PHYSICS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep01546

    DOI

    http://dx.doi.org/10.1038/srep01546

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022863280

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23529071


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aluminum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electric Power Supplies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Electron", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanowires", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silicon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solar Energy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sunlight", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zinc Oxide", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada", 
                "Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Adachi", 
            "givenName": "M. M.", 
            "id": "sg:person.014240614553.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014240614553.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Washington", 
              "id": "https://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Electrical Engineering, University of Washington, Seattle, Washington 98105-2500, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anantram", 
            "givenName": "M. P.", 
            "id": "sg:person.01025711070.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025711070.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada", 
                "Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karim", 
            "givenName": "K. S.", 
            "id": "sg:person.0765034116.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765034116.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/1.2768999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007992182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2009.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016274073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003390050986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018939614", 
              "https://doi.org/10.1007/s003390050986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2009.02.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025128892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200500137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029338745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200500137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029338745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5428.692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033463925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl073296g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038175388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl073296g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038175388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-0248(00)00183-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039232872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040787360", 
              "https://doi.org/10.1038/nmat1387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040787360", 
              "https://doi.org/10.1038/nmat1387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pip.1245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045399295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl100161z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046261744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl100161z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046261744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.019371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048182914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.019371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048182914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl102183x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053167468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl102183x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053167468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0808076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0808076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl301435r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056219425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl803641f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl803641f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1753975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057814420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1901835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057831534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2821113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057875491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3275798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057929722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.340414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057947292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3496044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057962419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.356039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057974575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3567527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057976177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.97430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058137544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.19.0a1148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065198674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.35.003378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065229245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pvsc.2010.5616926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094780552"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12", 
        "datePublishedReg": "2013-12-01", 
        "description": "Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400\u2005nm < \u03bb < 650\u2005nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/srep01546", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3112306", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Core-shell silicon nanowire solar cells", 
        "pagination": "1546", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6ceccad9d1052bdd3c43928fc9e80488601449d8008685394997af3b850abc6c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23529071"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep01546"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022863280"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep01546", 
          "https://app.dimensions.ai/details/publication/pub.1022863280"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/srep/2013/130326/srep01546/full/srep01546.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep01546'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep01546'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep01546'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep01546'


     

    This table displays all metadata directly associated to this object as RDF triples.

    206 TRIPLES      21 PREDICATES      65 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep01546 schema:about N03abe023f6104b6f8801818530e8fa66
    2 N1ccab445ba1442aca0bdccdd550e30c5
    3 N24d195c4a0d74a52859af06e4c7bcef3
    4 N2cfbd06220334ffba5909fe43135d392
    5 N950e4c4992e646cd83e04b0bae85292e
    6 Nd03d69120ea842fe92da236fafe9263c
    7 Nef14ee39e8464f00ab510562ed483c8a
    8 Nf65059920cbb434f8d2379ae46e27520
    9 anzsrc-for:09
    10 anzsrc-for:0912
    11 schema:author N6b027c5c32a24de6bad87194c650744d
    12 schema:citation sg:pub.10.1007/s003390050986
    13 sg:pub.10.1038/nmat1387
    14 https://doi.org/10.1002/pip.1245
    15 https://doi.org/10.1002/smll.200500137
    16 https://doi.org/10.1016/j.solmat.2009.02.024
    17 https://doi.org/10.1016/j.solmat.2009.04.009
    18 https://doi.org/10.1016/s0927-0248(00)00183-5
    19 https://doi.org/10.1021/nl073296g
    20 https://doi.org/10.1021/nl0808076
    21 https://doi.org/10.1021/nl100161z
    22 https://doi.org/10.1021/nl102183x
    23 https://doi.org/10.1021/nl301435r
    24 https://doi.org/10.1021/nl803641f
    25 https://doi.org/10.1063/1.1753975
    26 https://doi.org/10.1063/1.1901835
    27 https://doi.org/10.1063/1.2821113
    28 https://doi.org/10.1063/1.3275798
    29 https://doi.org/10.1063/1.340414
    30 https://doi.org/10.1063/1.3496044
    31 https://doi.org/10.1063/1.356039
    32 https://doi.org/10.1063/1.3567527
    33 https://doi.org/10.1063/1.97430
    34 https://doi.org/10.1109/pvsc.2010.5616926
    35 https://doi.org/10.1117/1.2768999
    36 https://doi.org/10.1126/science.285.5428.692
    37 https://doi.org/10.1364/oe.17.019371
    38 https://doi.org/10.1364/oe.19.0a1148
    39 https://doi.org/10.1364/ol.35.003378
    40 schema:datePublished 2013-12
    41 schema:datePublishedReg 2013-12-01
    42 schema:description Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N14c6b2fe13fe4638bd224a9a435d814a
    47 Nb14ffe49497c45ea93e968af0383c9c6
    48 sg:journal.1045337
    49 schema:name Core-shell silicon nanowire solar cells
    50 schema:pagination 1546
    51 schema:productId N6d55e0f1c0b3485fbc517f6767b79dd3
    52 N90e91c187181489bb52205776509a1c0
    53 Na1b825204b8d4159978ccd6e2e6d0632
    54 Nb7a9acbcc96f450a90585e00a9e5a4cd
    55 Nc0d9e94fdf7e4063b035de4c20094eee
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022863280
    57 https://doi.org/10.1038/srep01546
    58 schema:sdDatePublished 2019-04-10T22:19
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher Ndf54efa4b5f64f17b66ba694d9e6c52a
    61 schema:url http://www.nature.com/srep/2013/130326/srep01546/full/srep01546.html
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N03abe023f6104b6f8801818530e8fa66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    66 schema:name Zinc Oxide
    67 rdf:type schema:DefinedTerm
    68 N14c6b2fe13fe4638bd224a9a435d814a schema:issueNumber 1
    69 rdf:type schema:PublicationIssue
    70 N1ccab445ba1442aca0bdccdd550e30c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Solar Energy
    72 rdf:type schema:DefinedTerm
    73 N24d195c4a0d74a52859af06e4c7bcef3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Sunlight
    75 rdf:type schema:DefinedTerm
    76 N2cfbd06220334ffba5909fe43135d392 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name Microscopy, Electron
    78 rdf:type schema:DefinedTerm
    79 N3505fac120b14ae98785f5b5a82ca3ce rdf:first sg:person.0765034116.93
    80 rdf:rest rdf:nil
    81 N6b027c5c32a24de6bad87194c650744d rdf:first sg:person.014240614553.87
    82 rdf:rest Nb393dc1d777545aab08df3d5a1e92d92
    83 N6d55e0f1c0b3485fbc517f6767b79dd3 schema:name readcube_id
    84 schema:value 6ceccad9d1052bdd3c43928fc9e80488601449d8008685394997af3b850abc6c
    85 rdf:type schema:PropertyValue
    86 N90e91c187181489bb52205776509a1c0 schema:name doi
    87 schema:value 10.1038/srep01546
    88 rdf:type schema:PropertyValue
    89 N950e4c4992e646cd83e04b0bae85292e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Electric Power Supplies
    91 rdf:type schema:DefinedTerm
    92 Na1b825204b8d4159978ccd6e2e6d0632 schema:name dimensions_id
    93 schema:value pub.1022863280
    94 rdf:type schema:PropertyValue
    95 Nb14ffe49497c45ea93e968af0383c9c6 schema:volumeNumber 3
    96 rdf:type schema:PublicationVolume
    97 Nb393dc1d777545aab08df3d5a1e92d92 rdf:first sg:person.01025711070.26
    98 rdf:rest N3505fac120b14ae98785f5b5a82ca3ce
    99 Nb7a9acbcc96f450a90585e00a9e5a4cd schema:name nlm_unique_id
    100 schema:value 101563288
    101 rdf:type schema:PropertyValue
    102 Nc0d9e94fdf7e4063b035de4c20094eee schema:name pubmed_id
    103 schema:value 23529071
    104 rdf:type schema:PropertyValue
    105 Nd03d69120ea842fe92da236fafe9263c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Nanowires
    107 rdf:type schema:DefinedTerm
    108 Ndf54efa4b5f64f17b66ba694d9e6c52a schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 Nef14ee39e8464f00ab510562ed483c8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Aluminum
    112 rdf:type schema:DefinedTerm
    113 Nf65059920cbb434f8d2379ae46e27520 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Silicon
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Engineering
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Materials Engineering
    121 rdf:type schema:DefinedTerm
    122 sg:grant.3112306 http://pending.schema.org/fundedItem sg:pub.10.1038/srep01546
    123 rdf:type schema:MonetaryGrant
    124 sg:journal.1045337 schema:issn 2045-2322
    125 schema:name Scientific Reports
    126 rdf:type schema:Periodical
    127 sg:person.01025711070.26 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
    128 schema:familyName Anantram
    129 schema:givenName M. P.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025711070.26
    131 rdf:type schema:Person
    132 sg:person.014240614553.87 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    133 schema:familyName Adachi
    134 schema:givenName M. M.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014240614553.87
    136 rdf:type schema:Person
    137 sg:person.0765034116.93 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    138 schema:familyName Karim
    139 schema:givenName K. S.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765034116.93
    141 rdf:type schema:Person
    142 sg:pub.10.1007/s003390050986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018939614
    143 https://doi.org/10.1007/s003390050986
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nmat1387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040787360
    146 https://doi.org/10.1038/nmat1387
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1002/pip.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045399295
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1002/smll.200500137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029338745
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.solmat.2009.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025128892
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.solmat.2009.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016274073
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/s0927-0248(00)00183-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039232872
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1021/nl073296g schema:sameAs https://app.dimensions.ai/details/publication/pub.1038175388
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1021/nl0808076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217770
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1021/nl100161z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046261744
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1021/nl102183x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053167468
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1021/nl301435r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219425
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1021/nl803641f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221747
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1063/1.1753975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057814420
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1063/1.1901835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057831534
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1063/1.2821113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057875491
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1063/1.3275798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057929722
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1063/1.340414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057947292
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1063/1.3496044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057962419
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1063/1.356039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057974575
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1063/1.3567527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057976177
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1063/1.97430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058137544
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1109/pvsc.2010.5616926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094780552
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1117/1.2768999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007992182
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1126/science.285.5428.692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033463925
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1364/oe.17.019371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048182914
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1364/oe.19.0a1148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065198674
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1364/ol.35.003378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065229245
    199 rdf:type schema:CreativeWork
    200 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
    201 schema:name Department of Electrical Engineering, University of Washington, Seattle, Washington 98105-2500, USA
    202 rdf:type schema:Organization
    203 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    204 schema:name Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
    205 Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
    206 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...