Batch-fabricated high-performance graphene Hall elements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Huilong Xu, Zhiyong Zhang, Runbo Shi, Honggang Liu, Zhenxing Wang, Sheng Wang, Lian-Mao Peng

ABSTRACT

Hall elements are by far the most widely used magnetic sensor. In general, the higher the mobility and the thinner the active region of the semiconductor used, the better the Hall device. While most common magnetic field sensors are Si-based Hall sensors, devices made from III-V compounds tend to favor over that based on Si. However these devices are more expensive and difficult to manufacture than Si, and hard to be integrated with signal-processing circuits for extending function and enforcing performance. In this article we show that graphene is intrinsically an ideal material for Hall elements which may harness the remarkable properties of graphene, i.e. extremely high carrier mobility and atomically thin active body, to create ideal magnetic sensors with high sensitivity, excellent linearity and remarkable thermal stability. More... »

PAGES

1207

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep01207

DOI

http://dx.doi.org/10.1038/srep01207

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020195184

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23383375


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Huilong", 
        "id": "sg:person.0657047525.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657047525.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhiyong", 
        "id": "sg:person.01266511511.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266511511.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Runbo", 
        "id": "sg:person.01171064104.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171064104.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Microelectronics", 
          "id": "https://www.grid.ac/institutes/grid.459171.f", 
          "name": [
            "Microwave Devices and Integrated Circuits Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Honggang", 
        "id": "sg:person.014617766113.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617766113.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhenxing", 
        "id": "sg:person.01362111433.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362111433.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Sheng", 
        "id": "sg:person.0752733733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752733733.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Lian-Mao", 
        "id": "sg:person.010515521607.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10854-007-9408-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000074492", 
          "https://doi.org/10.1007/s10854-007-9408-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2004.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001918372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/26/8/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004544026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006827577", 
          "https://doi.org/10.1038/nphoton.2010.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006827577", 
          "https://doi.org/10.1038/nphoton.2010.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s110100876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009408157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011423110", 
          "https://doi.org/10.1038/nnano.2010.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011423110", 
          "https://doi.org/10.1038/nnano.2010.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201103411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018193920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024874242", 
          "https://doi.org/10.1038/nphys935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-4247(03)00192-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025661491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-4247(03)00192-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025661491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201538m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027709712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201538m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027709712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033456804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.235402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033764420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.235402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033764420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(96)00924-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035033746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036413274", 
          "https://doi.org/10.1038/ncomms1702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0924-4247(96)01285-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039204686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040606030", 
          "https://doi.org/10.1038/nnano.2008.199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0704772104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041096485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1204428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041550088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043196688", 
          "https://doi.org/10.1038/nmat1967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2776887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049832147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903690y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903690y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1954867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057833962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2043238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2201339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057846172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3074513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057909999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3640218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057990030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3677769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057998588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2010.2043429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061321250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/led.2010.2100074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061355239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-ed.1982.20661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061462418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1887/0750308559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099117684"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Hall elements are by far the most widely used magnetic sensor. In general, the higher the mobility and the thinner the active region of the semiconductor used, the better the Hall device. While most common magnetic field sensors are Si-based Hall sensors, devices made from III-V compounds tend to favor over that based on Si. However these devices are more expensive and difficult to manufacture than Si, and hard to be integrated with signal-processing circuits for extending function and enforcing performance. In this article we show that graphene is intrinsically an ideal material for Hall elements which may harness the remarkable properties of graphene, i.e. extremely high carrier mobility and atomically thin active body, to create ideal magnetic sensors with high sensitivity, excellent linearity and remarkable thermal stability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep01207", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Batch-fabricated high-performance graphene Hall elements", 
    "pagination": "1207", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60390730c863d8fa5b0082d8917875dcdac396e0a68e882c3dc7fb5effabb1eb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23383375"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep01207"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020195184"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep01207", 
      "https://app.dimensions.ai/details/publication/pub.1020195184"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2013/130204/srep01207/full/srep01207.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep01207'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep01207'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep01207'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep01207'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep01207 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Nb4c2e6740e394dadb78e62d3271a2f39
4 schema:citation sg:pub.10.1007/s10854-007-9408-0
5 sg:pub.10.1038/ncomms1702
6 sg:pub.10.1038/nmat1967
7 sg:pub.10.1038/nnano.2008.199
8 sg:pub.10.1038/nnano.2010.172
9 sg:pub.10.1038/nnano.2010.89
10 sg:pub.10.1038/nphoton.2010.40
11 sg:pub.10.1038/nphys935
12 https://doi.org/10.1002/adma.201103411
13 https://doi.org/10.1016/0924-4247(96)01285-x
14 https://doi.org/10.1016/j.sna.2004.03.029
15 https://doi.org/10.1016/s0022-0248(96)00924-4
16 https://doi.org/10.1016/s0924-4247(03)00192-4
17 https://doi.org/10.1021/nl201538m
18 https://doi.org/10.1021/nl903690y
19 https://doi.org/10.1063/1.1954867
20 https://doi.org/10.1063/1.2043238
21 https://doi.org/10.1063/1.2201339
22 https://doi.org/10.1063/1.2776887
23 https://doi.org/10.1063/1.3074513
24 https://doi.org/10.1063/1.3640218
25 https://doi.org/10.1063/1.3677769
26 https://doi.org/10.1073/pnas.0704772104
27 https://doi.org/10.1088/0022-3727/26/8/001
28 https://doi.org/10.1103/physrevb.80.235402
29 https://doi.org/10.1109/jsen.2010.2043429
30 https://doi.org/10.1109/led.2010.2100074
31 https://doi.org/10.1109/t-ed.1982.20661
32 https://doi.org/10.1126/science.1137201
33 https://doi.org/10.1126/science.1204428
34 https://doi.org/10.1887/0750308559
35 https://doi.org/10.3390/s110100876
36 schema:datePublished 2013-12
37 schema:datePublishedReg 2013-12-01
38 schema:description Hall elements are by far the most widely used magnetic sensor. In general, the higher the mobility and the thinner the active region of the semiconductor used, the better the Hall device. While most common magnetic field sensors are Si-based Hall sensors, devices made from III-V compounds tend to favor over that based on Si. However these devices are more expensive and difficult to manufacture than Si, and hard to be integrated with signal-processing circuits for extending function and enforcing performance. In this article we show that graphene is intrinsically an ideal material for Hall elements which may harness the remarkable properties of graphene, i.e. extremely high carrier mobility and atomically thin active body, to create ideal magnetic sensors with high sensitivity, excellent linearity and remarkable thermal stability.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N050801d606b6489d8d6effe4d1fda03e
43 Na44c6858a2374c26bf06319af009c846
44 sg:journal.1045337
45 schema:name Batch-fabricated high-performance graphene Hall elements
46 schema:pagination 1207
47 schema:productId N0ccc2933026846e78eb440c04e558e60
48 N2254a4f36b7e4639aea311901152cf1e
49 N2956a0300778410283ce3601362820a5
50 N89622faa1b1a40459535e098644abc0a
51 Ndf39d41cc68b4b26863c5c8a26024451
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020195184
53 https://doi.org/10.1038/srep01207
54 schema:sdDatePublished 2019-04-10T22:19
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc9e8723dba794ef9b5c82bde1baed640
57 schema:url http://www.nature.com/srep/2013/130204/srep01207/full/srep01207.html
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N050801d606b6489d8d6effe4d1fda03e schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N0ccc2933026846e78eb440c04e558e60 schema:name nlm_unique_id
64 schema:value 101563288
65 rdf:type schema:PropertyValue
66 N1190da1ba944416b94a3472ebefbeaa7 rdf:first sg:person.01266511511.29
67 rdf:rest N50f0f907552e4bf6ad88ff57aa06ca6f
68 N2254a4f36b7e4639aea311901152cf1e schema:name dimensions_id
69 schema:value pub.1020195184
70 rdf:type schema:PropertyValue
71 N25c5ef4a50ee4bbf933a6930669d11de rdf:first sg:person.01362111433.47
72 rdf:rest N5f82ab87df2b4f27ac6fec71185da5b2
73 N2956a0300778410283ce3601362820a5 schema:name doi
74 schema:value 10.1038/srep01207
75 rdf:type schema:PropertyValue
76 N50f0f907552e4bf6ad88ff57aa06ca6f rdf:first sg:person.01171064104.11
77 rdf:rest Nb98aa4042b604ab18ab2af4b77485612
78 N5f82ab87df2b4f27ac6fec71185da5b2 rdf:first sg:person.0752733733.34
79 rdf:rest N7180fda169c64e83abab20ae47fd60c5
80 N7180fda169c64e83abab20ae47fd60c5 rdf:first sg:person.010515521607.58
81 rdf:rest rdf:nil
82 N89622faa1b1a40459535e098644abc0a schema:name readcube_id
83 schema:value 60390730c863d8fa5b0082d8917875dcdac396e0a68e882c3dc7fb5effabb1eb
84 rdf:type schema:PropertyValue
85 Na44c6858a2374c26bf06319af009c846 schema:volumeNumber 3
86 rdf:type schema:PublicationVolume
87 Nb4c2e6740e394dadb78e62d3271a2f39 rdf:first sg:person.0657047525.08
88 rdf:rest N1190da1ba944416b94a3472ebefbeaa7
89 Nb98aa4042b604ab18ab2af4b77485612 rdf:first sg:person.014617766113.14
90 rdf:rest N25c5ef4a50ee4bbf933a6930669d11de
91 Nc9e8723dba794ef9b5c82bde1baed640 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Ndf39d41cc68b4b26863c5c8a26024451 schema:name pubmed_id
94 schema:value 23383375
95 rdf:type schema:PropertyValue
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
100 schema:name Condensed Matter Physics
101 rdf:type schema:DefinedTerm
102 sg:journal.1045337 schema:issn 2045-2322
103 schema:name Scientific Reports
104 rdf:type schema:Periodical
105 sg:person.010515521607.58 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
106 schema:familyName Peng
107 schema:givenName Lian-Mao
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58
109 rdf:type schema:Person
110 sg:person.01171064104.11 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
111 schema:familyName Shi
112 schema:givenName Runbo
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171064104.11
114 rdf:type schema:Person
115 sg:person.01266511511.29 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
116 schema:familyName Zhang
117 schema:givenName Zhiyong
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266511511.29
119 rdf:type schema:Person
120 sg:person.01362111433.47 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
121 schema:familyName Wang
122 schema:givenName Zhenxing
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362111433.47
124 rdf:type schema:Person
125 sg:person.014617766113.14 schema:affiliation https://www.grid.ac/institutes/grid.459171.f
126 schema:familyName Liu
127 schema:givenName Honggang
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617766113.14
129 rdf:type schema:Person
130 sg:person.0657047525.08 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
131 schema:familyName Xu
132 schema:givenName Huilong
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657047525.08
134 rdf:type schema:Person
135 sg:person.0752733733.34 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
136 schema:familyName Wang
137 schema:givenName Sheng
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752733733.34
139 rdf:type schema:Person
140 sg:pub.10.1007/s10854-007-9408-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000074492
141 https://doi.org/10.1007/s10854-007-9408-0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/ncomms1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413274
144 https://doi.org/10.1038/ncomms1702
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmat1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043196688
147 https://doi.org/10.1038/nmat1967
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nnano.2008.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040606030
150 https://doi.org/10.1038/nnano.2008.199
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
153 https://doi.org/10.1038/nnano.2010.172
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nnano.2010.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011423110
156 https://doi.org/10.1038/nnano.2010.89
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nphoton.2010.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006827577
159 https://doi.org/10.1038/nphoton.2010.40
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nphys935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024874242
162 https://doi.org/10.1038/nphys935
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/adma.201103411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018193920
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0924-4247(96)01285-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039204686
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.sna.2004.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001918372
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0022-0248(96)00924-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035033746
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0924-4247(03)00192-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025661491
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/nl201538m schema:sameAs https://app.dimensions.ai/details/publication/pub.1027709712
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/nl903690y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222304
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.1954867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057833962
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.2043238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836608
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.2201339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057846172
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.2776887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049832147
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.3074513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057909999
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.3640218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057990030
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.3677769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057998588
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.0704772104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041096485
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1088/0022-3727/26/8/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004544026
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.80.235402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033764420
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/jsen.2010.2043429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061321250
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/led.2010.2100074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061355239
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/t-ed.1982.20661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061462418
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1137201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033456804
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.1204428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041550088
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1887/0750308559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099117684
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3390/s110100876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408157
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
213 schema:name Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.459171.f schema:alternateName Institute of Microelectronics
216 schema:name Microwave Devices and Integrated Circuits Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...