Tunable Tensile Ductility in Metallic Glasses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-01-21

AUTHORS

D. J. Magagnosc, R. Ehrbar, G. Kumar, M. R. He, J. Schroers, D. S. Gianola

ABSTRACT

Widespread adoption of metallic glasses (MGs) in applications motivated by high strength and elasticity combined with plastic-like processing has been stymied by their lack of tensile ductility. One emerging strategy to couple the attractive properties of MGs with resistance to failure by shear localization is to employ sub-micron sample or feature length scales, although conflicting results shroud an atomistic understanding of the responsible mechanisms in uncertainty. Here, we report in situ deformation experiments of directly moulded Pt57.5Cu14.7Ni5.3P22.5 MG nanowires, which show tunable tensile ductility. Initially brittle as-moulded nanowires can be coerced to a distinct glassy state upon irradiation with Ga+ ions, leading to tensile ductility and quasi-homogeneous plastic flow. This behaviour is reversible and the glass returns to a brittle state upon subsequent annealing. Our results suggest a novel mechanism for homogenous plastic flow in nano-scaled MGs and strategies for circumventing the poor damage tolerance that has long plagued MGs. More... »

PAGES

1096

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep01096

DOI

http://dx.doi.org/10.1038/srep01096

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053179545


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magagnosc", 
        "givenName": "D. J.", 
        "id": "sg:person.0677063700.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677063700.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials, Laboratory for Nanometallurgy, ETH Z\u00fcrich, 8093, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA", 
            "Department of Materials, Laboratory for Nanometallurgy, ETH Z\u00fcrich, 8093, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ehrbar", 
        "givenName": "R.", 
        "id": "sg:person.011465521725.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465521725.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Texas Tech University, 79409, Lubbock, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.264784.b", 
          "name": [
            "Department of Mechanical Engineering, Texas Tech University, 79409, Lubbock, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "G.", 
        "id": "sg:person.01273672222.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273672222.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "M. R.", 
        "id": "sg:person.0624664151.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624664151.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechanical Engineering, Yale University, 06511, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Mechanical Engineering, Yale University, 06511, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "J.", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gianola", 
        "givenName": "D. S.", 
        "id": "sg:person.01030354247.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030354247.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029069768", 
          "https://doi.org/10.1038/nmat982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/187869b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841532", 
          "https://doi.org/10.1038/187869b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/31189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025823230", 
          "https://doi.org/10.1038/31189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048668768", 
          "https://doi.org/10.1038/nmat1758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011777417", 
          "https://doi.org/10.1038/ncomms1619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157089", 
          "https://doi.org/10.1038/nature06598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042156004", 
          "https://doi.org/10.1038/nmat2930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030636840", 
          "https://doi.org/10.1038/nmat1984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049274138", 
          "https://doi.org/10.1038/nmat918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022408182", 
          "https://doi.org/10.1038/nmat2622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018290838", 
          "https://doi.org/10.1038/nature07718"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01-21", 
    "datePublishedReg": "2013-01-21", 
    "description": "Widespread adoption of metallic glasses (MGs) in applications motivated by high strength and elasticity combined with plastic-like processing has been stymied by their lack of tensile ductility. One emerging strategy to couple the attractive properties of MGs with resistance to failure by shear localization is to employ sub-micron sample or feature length scales, although conflicting results shroud an atomistic understanding of the responsible mechanisms in uncertainty. Here, we report in situ deformation experiments of directly moulded Pt57.5Cu14.7Ni5.3P22.5 MG nanowires, which show tunable tensile ductility. Initially brittle as-moulded nanowires can be coerced to a distinct glassy state upon irradiation with Ga+ ions, leading to tensile ductility and quasi-homogeneous plastic flow. This behaviour is reversible and the glass returns to a brittle state upon subsequent annealing. Our results suggest a novel mechanism for homogenous plastic flow in nano-scaled MGs and strategies for circumventing the poor damage tolerance that has long plagued MGs.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep01096", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3000925", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3127424", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "tensile ductility", 
      "metallic glasses", 
      "plastic flow", 
      "homogenous plastic flow", 
      "poor damage tolerance", 
      "situ deformation experiments", 
      "sub-micron samples", 
      "feature length scales", 
      "high strength", 
      "shear localization", 
      "ductility", 
      "damage tolerance", 
      "deformation experiments", 
      "brittle state", 
      "subsequent annealing", 
      "Mg nanowires", 
      "distinct glassy states", 
      "length scales", 
      "nanowires", 
      "attractive properties", 
      "glass", 
      "atomistic understanding", 
      "flow", 
      "glassy state", 
      "annealing", 
      "strength", 
      "elasticity", 
      "responsible mechanisms", 
      "properties", 
      "applications", 
      "processing", 
      "results", 
      "resistance", 
      "uncertainty", 
      "behavior", 
      "irradiation", 
      "widespread adoption", 
      "experiments", 
      "ions", 
      "mechanism", 
      "strategies", 
      "failure", 
      "state", 
      "scale", 
      "samples", 
      "localization", 
      "adoption", 
      "tolerance", 
      "understanding", 
      "lack", 
      "novel mechanism", 
      "conflicting results"
    ], 
    "name": "Tunable Tensile Ductility in Metallic Glasses", 
    "pagination": "1096", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053179545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep01096"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep01096", 
      "https://app.dimensions.ai/details/publication/pub.1053179545"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep01096"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep01096'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep01096'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep01096'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep01096'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      87 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep01096 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc3d5e309106f430ebed3e8f34dc4f60b
4 schema:citation sg:pub.10.1038/187869b0
5 sg:pub.10.1038/31189
6 sg:pub.10.1038/nature06598
7 sg:pub.10.1038/nature07718
8 sg:pub.10.1038/ncomms1619
9 sg:pub.10.1038/nmat1758
10 sg:pub.10.1038/nmat1984
11 sg:pub.10.1038/nmat2622
12 sg:pub.10.1038/nmat2930
13 sg:pub.10.1038/nmat918
14 sg:pub.10.1038/nmat982
15 schema:datePublished 2013-01-21
16 schema:datePublishedReg 2013-01-21
17 schema:description Widespread adoption of metallic glasses (MGs) in applications motivated by high strength and elasticity combined with plastic-like processing has been stymied by their lack of tensile ductility. One emerging strategy to couple the attractive properties of MGs with resistance to failure by shear localization is to employ sub-micron sample or feature length scales, although conflicting results shroud an atomistic understanding of the responsible mechanisms in uncertainty. Here, we report in situ deformation experiments of directly moulded Pt57.5Cu14.7Ni5.3P22.5 MG nanowires, which show tunable tensile ductility. Initially brittle as-moulded nanowires can be coerced to a distinct glassy state upon irradiation with Ga+ ions, leading to tensile ductility and quasi-homogeneous plastic flow. This behaviour is reversible and the glass returns to a brittle state upon subsequent annealing. Our results suggest a novel mechanism for homogenous plastic flow in nano-scaled MGs and strategies for circumventing the poor damage tolerance that has long plagued MGs.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N7178db3a1dc845369d59528e3f49275e
21 Nfd6a855d9b3c44a493b377d080aac604
22 sg:journal.1045337
23 schema:keywords Mg nanowires
24 adoption
25 annealing
26 applications
27 atomistic understanding
28 attractive properties
29 behavior
30 brittle state
31 conflicting results
32 damage tolerance
33 deformation experiments
34 distinct glassy states
35 ductility
36 elasticity
37 experiments
38 failure
39 feature length scales
40 flow
41 glass
42 glassy state
43 high strength
44 homogenous plastic flow
45 ions
46 irradiation
47 lack
48 length scales
49 localization
50 mechanism
51 metallic glasses
52 nanowires
53 novel mechanism
54 plastic flow
55 poor damage tolerance
56 processing
57 properties
58 resistance
59 responsible mechanisms
60 results
61 samples
62 scale
63 shear localization
64 situ deformation experiments
65 state
66 strategies
67 strength
68 sub-micron samples
69 subsequent annealing
70 tensile ductility
71 tolerance
72 uncertainty
73 understanding
74 widespread adoption
75 schema:name Tunable Tensile Ductility in Metallic Glasses
76 schema:pagination 1096
77 schema:productId N75b02f8b261a49129aa16218738efa03
78 Nb2f1336c11224871a14913e8b7fb06d5
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053179545
80 https://doi.org/10.1038/srep01096
81 schema:sdDatePublished 2022-10-01T06:38
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N54e17b793e9746a7bccb3316766dc487
84 schema:url https://doi.org/10.1038/srep01096
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N302c6132855d4e9786009da425bc723b rdf:first sg:person.01030354247.87
89 rdf:rest rdf:nil
90 N3e31e61f64914d8ba87923279d5fbb8f rdf:first sg:person.0624664151.16
91 rdf:rest Nf2aec487d4be4861b0e9723a540d54cb
92 N41f12f4cf38f4963b1a6ccc2ec81ac7c rdf:first sg:person.01273672222.19
93 rdf:rest N3e31e61f64914d8ba87923279d5fbb8f
94 N54e17b793e9746a7bccb3316766dc487 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N7178db3a1dc845369d59528e3f49275e schema:volumeNumber 3
97 rdf:type schema:PublicationVolume
98 N75b02f8b261a49129aa16218738efa03 schema:name doi
99 schema:value 10.1038/srep01096
100 rdf:type schema:PropertyValue
101 N9c2d19686d0f4f70a1ba698d0de066a0 rdf:first sg:person.011465521725.02
102 rdf:rest N41f12f4cf38f4963b1a6ccc2ec81ac7c
103 Nb2f1336c11224871a14913e8b7fb06d5 schema:name dimensions_id
104 schema:value pub.1053179545
105 rdf:type schema:PropertyValue
106 Nc3d5e309106f430ebed3e8f34dc4f60b rdf:first sg:person.0677063700.51
107 rdf:rest N9c2d19686d0f4f70a1ba698d0de066a0
108 Nf2aec487d4be4861b0e9723a540d54cb rdf:first sg:person.01145527322.19
109 rdf:rest N302c6132855d4e9786009da425bc723b
110 Nfd6a855d9b3c44a493b377d080aac604 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
116 schema:name Materials Engineering
117 rdf:type schema:DefinedTerm
118 sg:grant.3000925 http://pending.schema.org/fundedItem sg:pub.10.1038/srep01096
119 rdf:type schema:MonetaryGrant
120 sg:grant.3127424 http://pending.schema.org/fundedItem sg:pub.10.1038/srep01096
121 rdf:type schema:MonetaryGrant
122 sg:journal.1045337 schema:issn 2045-2322
123 schema:name Scientific Reports
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01030354247.87 schema:affiliation grid-institutes:grid.25879.31
127 schema:familyName Gianola
128 schema:givenName D. S.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030354247.87
130 rdf:type schema:Person
131 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
132 schema:familyName Schroers
133 schema:givenName J.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
135 rdf:type schema:Person
136 sg:person.011465521725.02 schema:affiliation grid-institutes:grid.5801.c
137 schema:familyName Ehrbar
138 schema:givenName R.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465521725.02
140 rdf:type schema:Person
141 sg:person.01273672222.19 schema:affiliation grid-institutes:grid.264784.b
142 schema:familyName Kumar
143 schema:givenName G.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273672222.19
145 rdf:type schema:Person
146 sg:person.0624664151.16 schema:affiliation grid-institutes:grid.25879.31
147 schema:familyName He
148 schema:givenName M. R.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624664151.16
150 rdf:type schema:Person
151 sg:person.0677063700.51 schema:affiliation grid-institutes:grid.25879.31
152 schema:familyName Magagnosc
153 schema:givenName D. J.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677063700.51
155 rdf:type schema:Person
156 sg:pub.10.1038/187869b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841532
157 https://doi.org/10.1038/187869b0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/31189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025823230
160 https://doi.org/10.1038/31189
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature06598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037157089
163 https://doi.org/10.1038/nature06598
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
166 https://doi.org/10.1038/nature07718
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ncomms1619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011777417
169 https://doi.org/10.1038/ncomms1619
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nmat1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048668768
172 https://doi.org/10.1038/nmat1758
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nmat1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030636840
175 https://doi.org/10.1038/nmat1984
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nmat2622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022408182
178 https://doi.org/10.1038/nmat2622
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat2930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042156004
181 https://doi.org/10.1038/nmat2930
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049274138
184 https://doi.org/10.1038/nmat918
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029069768
187 https://doi.org/10.1038/nmat982
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.25879.31 schema:alternateName Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA
190 schema:name Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA
191 rdf:type schema:Organization
192 grid-institutes:grid.264784.b schema:alternateName Department of Mechanical Engineering, Texas Tech University, 79409, Lubbock, Texas, USA
193 schema:name Department of Mechanical Engineering, Texas Tech University, 79409, Lubbock, Texas, USA
194 rdf:type schema:Organization
195 grid-institutes:grid.47100.32 schema:alternateName Mechanical Engineering, Yale University, 06511, New Haven, Connecticut, USA
196 schema:name Mechanical Engineering, Yale University, 06511, New Haven, Connecticut, USA
197 rdf:type schema:Organization
198 grid-institutes:grid.5801.c schema:alternateName Department of Materials, Laboratory for Nanometallurgy, ETH Zürich, 8093, Zürich, Switzerland
199 schema:name Department of Materials Science and Engineering, University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA
200 Department of Materials, Laboratory for Nanometallurgy, ETH Zürich, 8093, Zürich, Switzerland
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...