Activity driven modeling of time varying networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani

ABSTRACT

Network modeling plays a critical role in identifying statistical regularities and structural principles common to many systems. The large majority of recent modeling approaches are connectivity driven. The structural patterns of the network are at the basis of the mechanisms ruling the network formation. Connectivity driven models necessarily provide a time-aggregated representation that may fail to describe the instantaneous and fluctuating dynamics of many networks. We address this challenge by defining the activity potential, a time invariant function characterizing the agents' interactions and constructing an activity driven model capable of encoding the instantaneous time description of the network dynamics. The model provides an explanation of structural features such as the presence of hubs, which simply originate from the heterogeneous activity of agents. Within this framework, highly dynamical networks can be described analytically, allowing a quantitative discussion of the biases induced by the time-aggregated representations in the analysis of dynamical processes. More... »

PAGES

469

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep00469

DOI

http://dx.doi.org/10.1038/srep00469

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026257515

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22741058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Physics, College of Computer and Information Sciences, Department of Health Sciences, Northeastern University, Boston MA 02115 USA", 
            "Linkalab, Cagliari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perra", 
        "givenName": "N.", 
        "id": "sg:person.01266470364.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266470364.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Physics, College of Computer and Information Sciences, Department of Health Sciences, Northeastern University, Boston MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gon\u00e7alves", 
        "givenName": "B.", 
        "id": "sg:person.0617360236.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617360236.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universitat Polit\u00e8cnica de Catalunya", 
          "id": "https://www.grid.ac/institutes/grid.6835.8", 
          "name": [
            "Departament de F\u00edsica i Enginyeria Nuclear, Universitat Polit\u00e8cnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pastor-Satorras", 
        "givenName": "R.", 
        "id": "sg:person.01004776104.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004776104.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, College of Computer and Information Sciences, Department of Health Sciences, Northeastern University, Boston MA 02115 USA", 
            "Institute for Scientific Interchange Foundation, Turin 10133, Italy", 
            "Institute for Quantitative Social Sciences, Harvard University, Cambridge, MA, 02138"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vespignani", 
        "givenName": "A.", 
        "id": "sg:person.01270211166.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270211166.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2010.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007499378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008765199", 
          "https://doi.org/10.1038/nphys2160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009550067", 
          "https://doi.org/10.1038/43601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009550067", 
          "https://doi.org/10.1038/43601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0619-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011696368", 
          "https://doi.org/10.1007/978-1-4612-0619-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0619-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011696368", 
          "https://doi.org/10.1007/978-1-4612-0619-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.046120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012874251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.046120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012874251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2008.0218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017772043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.2.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018280471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.3.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018547792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.3.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018547792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0048686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019815030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730110112519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2005.04.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020798722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2005.04.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020798722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906910106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022068471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022068471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610245104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025075085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/1/013055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026108405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1284680.1284681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028593749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(99)00291-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031778360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2012.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033711124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034823586", 
          "https://doi.org/10.1038/nature06958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.adhoc.2011.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035866969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036521671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036521671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037119647", 
          "https://doi.org/10.1038/nature04292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037119647", 
          "https://doi.org/10.1038/nature04292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037119647", 
          "https://doi.org/10.1038/nature04292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041161194", 
          "https://doi.org/10.1038/nature03459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041161194", 
          "https://doi.org/10.1038/nature03459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-211-79280-3_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043420425", 
          "https://doi.org/10.1007/978-3-211-79280-3_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044308837", 
          "https://doi.org/10.1007/bf02294547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044308837", 
          "https://doi.org/10.1007/bf02294547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.036112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045283383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.036112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045283383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1927.0118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047710630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9531.2008.00203.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048368069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9531.2008.00203.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048368069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050658620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050658620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.3240060204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051332521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002030-199705000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052621358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002030-199705000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052621358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054056282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1981.10477598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1986.10478342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0022002707307632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0022002707307632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/sof.2002.0056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065049562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/reldis.2003.1238052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093172078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comsnets.2012.6151313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094929927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511610905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511791383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199206650.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098762313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "Network modeling plays a critical role in identifying statistical regularities and structural principles common to many systems. The large majority of recent modeling approaches are connectivity driven. The structural patterns of the network are at the basis of the mechanisms ruling the network formation. Connectivity driven models necessarily provide a time-aggregated representation that may fail to describe the instantaneous and fluctuating dynamics of many networks. We address this challenge by defining the activity potential, a time invariant function characterizing the agents' interactions and constructing an activity driven model capable of encoding the instantaneous time description of the network dynamics. The model provides an explanation of structural features such as the presence of hubs, which simply originate from the heterogeneous activity of agents. Within this framework, highly dynamical networks can be described analytically, allowing a quantitative discussion of the biases induced by the time-aggregated representations in the analysis of dynamical processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep00469", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Activity driven modeling of time varying networks", 
    "pagination": "469", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7d16a93600fa3541b5a8d4d1b1ee21ee34c5445a985881efa94ede115d958d00"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22741058"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep00469"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026257515"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep00469", 
      "https://app.dimensions.ai/details/publication/pub.1026257515"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/srep00469"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep00469'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep00469'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep00469'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep00469'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      82 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep00469 schema:about N127432b684ff474c95d100b5f51a7f54
2 N14fa1d08faed4f04858ebc03c80859b1
3 N24944abaf1564d86bbc86f3c09c92ed8
4 N6c9f3210ad13443487f6c341db89e352
5 N7fac514efeba4f1db8e0d1f5704ecac9
6 N9fe349b6fa6d4816a11dc29913fb4e43
7 anzsrc-for:01
8 anzsrc-for:0102
9 schema:author N42cc1965f61f4519af828b435bfb06cb
10 schema:citation sg:pub.10.1007/978-1-4612-0619-4
11 sg:pub.10.1007/978-3-211-79280-3_73
12 sg:pub.10.1007/bf02294547
13 sg:pub.10.1038/43601
14 sg:pub.10.1038/nature03459
15 sg:pub.10.1038/nature04292
16 sg:pub.10.1038/nature06958
17 sg:pub.10.1038/nphys2160
18 https://doi.org/10.1002/rsa.3240060204
19 https://doi.org/10.1016/j.adhoc.2011.06.003
20 https://doi.org/10.1016/j.jtbi.2010.11.033
21 https://doi.org/10.1016/j.physa.2005.04.047
22 https://doi.org/10.1016/j.physrep.2005.10.009
23 https://doi.org/10.1016/j.physrep.2012.03.001
24 https://doi.org/10.1016/s0378-4371(99)00291-5
25 https://doi.org/10.1017/cbo9780511610905
26 https://doi.org/10.1017/cbo9780511791383
27 https://doi.org/10.1073/pnas.0610245104
28 https://doi.org/10.1073/pnas.0906910106
29 https://doi.org/10.1073/pnas.98.2.404
30 https://doi.org/10.1080/00018730110112519
31 https://doi.org/10.1080/01621459.1981.10477598
32 https://doi.org/10.1080/01621459.1986.10478342
33 https://doi.org/10.1088/1367-2630/14/1/013055
34 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
35 https://doi.org/10.1097/00002030-199705000-00012
36 https://doi.org/10.1098/rsif.2008.0218
37 https://doi.org/10.1098/rspa.1927.0118
38 https://doi.org/10.1103/physics.3.17
39 https://doi.org/10.1103/physreve.68.036112
40 https://doi.org/10.1103/physreve.81.046120
41 https://doi.org/10.1103/physrevlett.105.218701
42 https://doi.org/10.1103/physrevlett.85.4633
43 https://doi.org/10.1103/physrevlett.96.218701
44 https://doi.org/10.1103/revmodphys.74.47
45 https://doi.org/10.1109/comsnets.2012.6151313
46 https://doi.org/10.1109/reldis.2003.1238052
47 https://doi.org/10.1111/j.1467-9531.2008.00203.x
48 https://doi.org/10.1126/science.1061076
49 https://doi.org/10.1126/science.1167742
50 https://doi.org/10.1126/science.1171022
51 https://doi.org/10.1126/science.1171990
52 https://doi.org/10.1126/science.286.5439.509
53 https://doi.org/10.1145/1284680.1284681
54 https://doi.org/10.1177/0022002707307632
55 https://doi.org/10.1353/sof.2002.0056
56 https://doi.org/10.1371/journal.pone.0048686
57 schema:datePublished 2012-12
58 schema:datePublishedReg 2012-12-01
59 schema:description Network modeling plays a critical role in identifying statistical regularities and structural principles common to many systems. The large majority of recent modeling approaches are connectivity driven. The structural patterns of the network are at the basis of the mechanisms ruling the network formation. Connectivity driven models necessarily provide a time-aggregated representation that may fail to describe the instantaneous and fluctuating dynamics of many networks. We address this challenge by defining the activity potential, a time invariant function characterizing the agents' interactions and constructing an activity driven model capable of encoding the instantaneous time description of the network dynamics. The model provides an explanation of structural features such as the presence of hubs, which simply originate from the heterogeneous activity of agents. Within this framework, highly dynamical networks can be described analytically, allowing a quantitative discussion of the biases induced by the time-aggregated representations in the analysis of dynamical processes.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree true
63 schema:isPartOf N50b474b8b3d44eb7b7a390f689d28413
64 N7733941cd63d414db955491b725a57bd
65 sg:journal.1045337
66 schema:name Activity driven modeling of time varying networks
67 schema:pagination 469
68 schema:productId N80d9e50d93464b6cbc5c4c9483ec355e
69 N84e60331fd944b5aab54f34d5c9448a0
70 N934dec79b43a4778873d4ec4a6e31c0d
71 N986260f462884bcfb65b9bfe79146ddf
72 Nd8dd3d62e730446f938c9e59ab20c382
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026257515
74 https://doi.org/10.1038/srep00469
75 schema:sdDatePublished 2019-04-10T19:15
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nc3b8e8691db043af8672a31620c087cb
78 schema:url http://www.nature.com/articles/srep00469
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N127432b684ff474c95d100b5f51a7f54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Models, Theoretical
84 rdf:type schema:DefinedTerm
85 N14fa1d08faed4f04858ebc03c80859b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Nonlinear Dynamics
87 rdf:type schema:DefinedTerm
88 N24944abaf1564d86bbc86f3c09c92ed8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Computer Simulation
90 rdf:type schema:DefinedTerm
91 N42cc1965f61f4519af828b435bfb06cb rdf:first sg:person.01266470364.31
92 rdf:rest N8695bbdc290d4df8b9e2583b349f0103
93 N50b474b8b3d44eb7b7a390f689d28413 schema:volumeNumber 2
94 rdf:type schema:PublicationVolume
95 N6c9f3210ad13443487f6c341db89e352 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Neural Networks (Computer)
97 rdf:type schema:DefinedTerm
98 N7733941cd63d414db955491b725a57bd schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 N7fac514efeba4f1db8e0d1f5704ecac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Time Factors
102 rdf:type schema:DefinedTerm
103 N80d9e50d93464b6cbc5c4c9483ec355e schema:name dimensions_id
104 schema:value pub.1026257515
105 rdf:type schema:PropertyValue
106 N84e60331fd944b5aab54f34d5c9448a0 schema:name pubmed_id
107 schema:value 22741058
108 rdf:type schema:PropertyValue
109 N85178e9ecdda49dcbbca1563c7d2ed78 rdf:first sg:person.01004776104.69
110 rdf:rest N8c9d26cb96ea44db82e7523fff556877
111 N8695bbdc290d4df8b9e2583b349f0103 rdf:first sg:person.0617360236.14
112 rdf:rest N85178e9ecdda49dcbbca1563c7d2ed78
113 N8c9d26cb96ea44db82e7523fff556877 rdf:first sg:person.01270211166.22
114 rdf:rest rdf:nil
115 N934dec79b43a4778873d4ec4a6e31c0d schema:name readcube_id
116 schema:value 7d16a93600fa3541b5a8d4d1b1ee21ee34c5445a985881efa94ede115d958d00
117 rdf:type schema:PropertyValue
118 N986260f462884bcfb65b9bfe79146ddf schema:name nlm_unique_id
119 schema:value 101563288
120 rdf:type schema:PropertyValue
121 N9fe349b6fa6d4816a11dc29913fb4e43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Algorithms
123 rdf:type schema:DefinedTerm
124 Nc3b8e8691db043af8672a31620c087cb schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nd8dd3d62e730446f938c9e59ab20c382 schema:name doi
127 schema:value 10.1038/srep00469
128 rdf:type schema:PropertyValue
129 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
130 schema:name Mathematical Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
133 schema:name Applied Mathematics
134 rdf:type schema:DefinedTerm
135 sg:journal.1045337 schema:issn 2045-2322
136 schema:name Scientific Reports
137 rdf:type schema:Periodical
138 sg:person.01004776104.69 schema:affiliation https://www.grid.ac/institutes/grid.6835.8
139 schema:familyName Pastor-Satorras
140 schema:givenName R.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004776104.69
142 rdf:type schema:Person
143 sg:person.01266470364.31 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
144 schema:familyName Perra
145 schema:givenName N.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266470364.31
147 rdf:type schema:Person
148 sg:person.01270211166.22 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
149 schema:familyName Vespignani
150 schema:givenName A.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270211166.22
152 rdf:type schema:Person
153 sg:person.0617360236.14 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
154 schema:familyName Gonçalves
155 schema:givenName B.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617360236.14
157 rdf:type schema:Person
158 sg:pub.10.1007/978-1-4612-0619-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011696368
159 https://doi.org/10.1007/978-1-4612-0619-4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-3-211-79280-3_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043420425
162 https://doi.org/10.1007/978-3-211-79280-3_73
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/bf02294547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044308837
165 https://doi.org/10.1007/bf02294547
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/43601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550067
168 https://doi.org/10.1038/43601
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature03459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041161194
171 https://doi.org/10.1038/nature03459
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature04292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037119647
174 https://doi.org/10.1038/nature04292
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature06958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034823586
177 https://doi.org/10.1038/nature06958
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nphys2160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008765199
180 https://doi.org/10.1038/nphys2160
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/rsa.3240060204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051332521
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.adhoc.2011.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035866969
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jtbi.2010.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007499378
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.physa.2005.04.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020798722
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.physrep.2012.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711124
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0378-4371(99)00291-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031778360
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1017/cbo9780511610905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666412
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1017/cbo9780511791383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667199
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.0610245104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025075085
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1073/pnas.0906910106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424991
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1073/pnas.98.2.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018280471
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1080/00018730110112519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965146
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1080/01621459.1981.10477598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302421
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1080/01621459.1986.10478342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303319
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1088/1367-2630/14/1/013055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026108405
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098762313
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1097/00002030-199705000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052621358
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1098/rsif.2008.0218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017772043
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1098/rspa.1927.0118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047710630
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physics.3.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018547792
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physreve.68.036112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045283383
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physreve.81.046120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012874251
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.105.218701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036521671
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.85.4633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050658620
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.96.218701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022068471
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/comsnets.2012.6151313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094929927
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/reldis.2003.1238052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093172078
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1111/j.1467-9531.2008.00203.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048368069
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1061076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445065
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1167742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459206
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1171022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054056282
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1171990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460014
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1145/1284680.1284681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028593749
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1177/0022002707307632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063625424
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1353/sof.2002.0056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065049562
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pone.0048686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019815030
259 rdf:type schema:CreativeWork
260 https://www.grid.ac/institutes/grid.261112.7 schema:alternateName Northeastern University
261 schema:name Department of Physics, College of Computer and Information Sciences, Department of Health Sciences, Northeastern University, Boston MA 02115 USA
262 Linkalab, Cagliari, Italy
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
265 schema:name Department of Physics, College of Computer and Information Sciences, Department of Health Sciences, Northeastern University, Boston MA 02115 USA
266 Institute for Quantitative Social Sciences, Harvard University, Cambridge, MA, 02138
267 Institute for Scientific Interchange Foundation, Turin 10133, Italy
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.6835.8 schema:alternateName Universitat Politècnica de Catalunya
270 schema:name Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...