Electric-field control of magnetic domain wall motion and local magnetization reversal View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Tuomas H. E. Lahtinen, Kévin J. A. Franke, Sebastiaan van Dijken

ABSTRACT

Spintronic devices currently rely on magnetic switching or controlled motion of domain walls by an external magnetic field or spin-polarized current. Achieving the same degree of magnetic controllability using an electric field has potential advantages including enhanced functionality and low power consumption. Here we report on an approach to electrically control local magnetic properties, including the writing and erasure of regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BaTiO(3) heterostructures. Our method is based on recurrent strain transfer from ferroelastic domains in ferroelectric media to continuous magnetostrictive films with negligible magnetocrystalline anisotropy. Optical polarization microscopy of both ferromagnetic and ferroelectric domain structures reveals that domain correlations and strong inter-ferroic domain wall pinning persist in an applied electric field. This leads to an unprecedented electric controllability over the ferromagnetic microstructure, an accomplishment that produces giant magnetoelectric coupling effects and opens the way to electric-field driven spintronics. More... »

PAGES

258

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep00258

DOI

http://dx.doi.org/10.1038/srep00258

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029853019

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22355770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aalto University", 
          "id": "https://www.grid.ac/institutes/grid.5373.2", 
          "name": [
            "NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lahtinen", 
        "givenName": "Tuomas H. E.", 
        "id": "sg:person.01260350247.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260350247.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aalto University", 
          "id": "https://www.grid.ac/institutes/grid.5373.2", 
          "name": [
            "NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franke", 
        "givenName": "K\u00e9vin J. A.", 
        "id": "sg:person.014771454637.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014771454637.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aalto University", 
          "id": "https://www.grid.ac/institutes/grid.5373.2", 
          "name": [
            "NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Dijken", 
        "givenName": "Sebastiaan", 
        "id": "sg:person.01255700402.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255700402.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001003201", 
          "https://doi.org/10.1038/nmat2184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200901131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001431049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002220407", 
          "https://doi.org/10.1038/nmat2024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004353310", 
          "https://doi.org/10.1038/nmat2785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004353310", 
          "https://doi.org/10.1038/nmat2785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.047201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007214713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.047201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007214713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273606", 
          "https://doi.org/10.1038/nature05023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273606", 
          "https://doi.org/10.1038/nature05023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201003636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012500455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.144425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014561876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.144425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014561876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014860141", 
          "https://doi.org/10.1038/nmat3098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201100426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017434997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200900278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020379964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200900278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020379964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022312723", 
          "https://doi.org/10.1038/nmat1886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022312723", 
          "https://doi.org/10.1038/nmat1886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.054408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027080332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.054408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027080332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027093770", 
          "https://doi.org/10.1038/nmat2803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027539316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027539316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.227201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031773575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.227201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031773575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033256807", 
          "https://doi.org/10.1038/nmat1805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033256807", 
          "https://doi.org/10.1038/nmat1805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2009-00296-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044101762", 
          "https://doi.org/10.1140/epjb/e2009-00296-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2009-00296-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044101762", 
          "https://doi.org/10.1140/epjb/e2009-00296-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1984643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057834353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2901879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057880414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3377923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057944028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3475417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057958085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3628464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057988022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.092108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.092108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.104445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.104445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.017204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.017204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.257601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.257601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.117203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.117203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2004.832256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061676960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1136629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "Spintronic devices currently rely on magnetic switching or controlled motion of domain walls by an external magnetic field or spin-polarized current. Achieving the same degree of magnetic controllability using an electric field has potential advantages including enhanced functionality and low power consumption. Here we report on an approach to electrically control local magnetic properties, including the writing and erasure of regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BaTiO(3) heterostructures. Our method is based on recurrent strain transfer from ferroelastic domains in ferroelectric media to continuous magnetostrictive films with negligible magnetocrystalline anisotropy. Optical polarization microscopy of both ferromagnetic and ferroelectric domain structures reveals that domain correlations and strong inter-ferroic domain wall pinning persist in an applied electric field. This leads to an unprecedented electric controllability over the ferromagnetic microstructure, an accomplishment that produces giant magnetoelectric coupling effects and opens the way to electric-field driven spintronics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep00258", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4244830", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Electric-field control of magnetic domain wall motion and local magnetization reversal", 
    "pagination": "258", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e378e07e50a1bf8e5c1dcbef2af81c82bfe2a7f28b21cec301d6e88668659c6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22355770"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep00258"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029853019"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep00258", 
      "https://app.dimensions.ai/details/publication/pub.1029853019"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2012/120210/srep00258/full/srep00258.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep00258'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep00258'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep00258'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep00258'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep00258 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N06484b4597f446499db19a36f1b94c8a
4 schema:citation sg:pub.10.1038/nature05023
5 sg:pub.10.1038/nmat1805
6 sg:pub.10.1038/nmat1886
7 sg:pub.10.1038/nmat2024
8 sg:pub.10.1038/nmat2184
9 sg:pub.10.1038/nmat2785
10 sg:pub.10.1038/nmat2803
11 sg:pub.10.1038/nmat3098
12 sg:pub.10.1140/epjb/e2009-00296-x
13 https://doi.org/10.1002/adma.200900278
14 https://doi.org/10.1002/adma.200901131
15 https://doi.org/10.1002/adma.201003636
16 https://doi.org/10.1002/adma.201100426
17 https://doi.org/10.1063/1.1984643
18 https://doi.org/10.1063/1.2901879
19 https://doi.org/10.1063/1.3377923
20 https://doi.org/10.1063/1.3475417
21 https://doi.org/10.1063/1.3628464
22 https://doi.org/10.1103/physrevb.75.054408
23 https://doi.org/10.1103/physrevb.76.092108
24 https://doi.org/10.1103/physrevb.77.104445
25 https://doi.org/10.1103/physrevb.78.212406
26 https://doi.org/10.1103/physrevb.81.144425
27 https://doi.org/10.1103/physrevlett.100.017204
28 https://doi.org/10.1103/physrevlett.103.257601
29 https://doi.org/10.1103/physrevlett.94.117203
30 https://doi.org/10.1103/physrevlett.97.047201
31 https://doi.org/10.1103/physrevlett.97.227201
32 https://doi.org/10.1109/tmag.2004.832256
33 https://doi.org/10.1126/science.1108813
34 https://doi.org/10.1126/science.1136629
35 https://doi.org/10.1126/science.1145799
36 https://doi.org/10.1126/science.1184028
37 schema:datePublished 2012-12
38 schema:datePublishedReg 2012-12-01
39 schema:description Spintronic devices currently rely on magnetic switching or controlled motion of domain walls by an external magnetic field or spin-polarized current. Achieving the same degree of magnetic controllability using an electric field has potential advantages including enhanced functionality and low power consumption. Here we report on an approach to electrically control local magnetic properties, including the writing and erasure of regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BaTiO(3) heterostructures. Our method is based on recurrent strain transfer from ferroelastic domains in ferroelectric media to continuous magnetostrictive films with negligible magnetocrystalline anisotropy. Optical polarization microscopy of both ferromagnetic and ferroelectric domain structures reveals that domain correlations and strong inter-ferroic domain wall pinning persist in an applied electric field. This leads to an unprecedented electric controllability over the ferromagnetic microstructure, an accomplishment that produces giant magnetoelectric coupling effects and opens the way to electric-field driven spintronics.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Na309c44f6207446cbbe09794703216a8
44 Na4894b1081134c60a4e565baedc3782e
45 sg:journal.1045337
46 schema:name Electric-field control of magnetic domain wall motion and local magnetization reversal
47 schema:pagination 258
48 schema:productId N0ae6f60dc4474ae0859b0e18280412a7
49 N2fb107dc50ea41ff8f94442447f154d9
50 N7445f9603af14cf086ab21c5af24f8d2
51 N9f4d1c6af4fd4fba8317379514e4bff0
52 Nfa215e672dff47b2bc1bde5f32cc46a0
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029853019
54 https://doi.org/10.1038/srep00258
55 schema:sdDatePublished 2019-04-11T00:55
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Ndc0097c0b669413eae44421a0f4363dd
58 schema:url http://www.nature.com/srep/2012/120210/srep00258/full/srep00258.html
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N06484b4597f446499db19a36f1b94c8a rdf:first sg:person.01260350247.72
63 rdf:rest N194f8745242545d68abbf88af0c7ac14
64 N0ae6f60dc4474ae0859b0e18280412a7 schema:name readcube_id
65 schema:value 8e378e07e50a1bf8e5c1dcbef2af81c82bfe2a7f28b21cec301d6e88668659c6
66 rdf:type schema:PropertyValue
67 N194f8745242545d68abbf88af0c7ac14 rdf:first sg:person.014771454637.40
68 rdf:rest N7beb4010fae648a1895edb98553ae4f6
69 N2fb107dc50ea41ff8f94442447f154d9 schema:name doi
70 schema:value 10.1038/srep00258
71 rdf:type schema:PropertyValue
72 N7445f9603af14cf086ab21c5af24f8d2 schema:name nlm_unique_id
73 schema:value 101563288
74 rdf:type schema:PropertyValue
75 N7beb4010fae648a1895edb98553ae4f6 rdf:first sg:person.01255700402.93
76 rdf:rest rdf:nil
77 N9f4d1c6af4fd4fba8317379514e4bff0 schema:name dimensions_id
78 schema:value pub.1029853019
79 rdf:type schema:PropertyValue
80 Na309c44f6207446cbbe09794703216a8 schema:volumeNumber 2
81 rdf:type schema:PublicationVolume
82 Na4894b1081134c60a4e565baedc3782e schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 Ndc0097c0b669413eae44421a0f4363dd schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nfa215e672dff47b2bc1bde5f32cc46a0 schema:name pubmed_id
87 schema:value 22355770
88 rdf:type schema:PropertyValue
89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
90 schema:name Engineering
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
93 schema:name Materials Engineering
94 rdf:type schema:DefinedTerm
95 sg:grant.4244830 http://pending.schema.org/fundedItem sg:pub.10.1038/srep00258
96 rdf:type schema:MonetaryGrant
97 sg:journal.1045337 schema:issn 2045-2322
98 schema:name Scientific Reports
99 rdf:type schema:Periodical
100 sg:person.01255700402.93 schema:affiliation https://www.grid.ac/institutes/grid.5373.2
101 schema:familyName van Dijken
102 schema:givenName Sebastiaan
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255700402.93
104 rdf:type schema:Person
105 sg:person.01260350247.72 schema:affiliation https://www.grid.ac/institutes/grid.5373.2
106 schema:familyName Lahtinen
107 schema:givenName Tuomas H. E.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260350247.72
109 rdf:type schema:Person
110 sg:person.014771454637.40 schema:affiliation https://www.grid.ac/institutes/grid.5373.2
111 schema:familyName Franke
112 schema:givenName Kévin J. A.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014771454637.40
114 rdf:type schema:Person
115 sg:pub.10.1038/nature05023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273606
116 https://doi.org/10.1038/nature05023
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nmat1805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033256807
119 https://doi.org/10.1038/nmat1805
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nmat1886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022312723
122 https://doi.org/10.1038/nmat1886
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat2024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002220407
125 https://doi.org/10.1038/nmat2024
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat2184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001003201
128 https://doi.org/10.1038/nmat2184
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmat2785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004353310
131 https://doi.org/10.1038/nmat2785
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmat2803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027093770
134 https://doi.org/10.1038/nmat2803
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nmat3098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014860141
137 https://doi.org/10.1038/nmat3098
138 rdf:type schema:CreativeWork
139 sg:pub.10.1140/epjb/e2009-00296-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044101762
140 https://doi.org/10.1140/epjb/e2009-00296-x
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/adma.200900278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020379964
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/adma.200901131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001431049
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/adma.201003636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012500455
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/adma.201100426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017434997
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.1984643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057834353
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.2901879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057880414
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.3377923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057944028
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.3475417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057958085
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.3628464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057988022
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.75.054408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027080332
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.76.092108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060622217
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.77.104445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060624187
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.78.212406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626741
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.81.144425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014561876
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.100.017204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752637
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.103.257601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756388
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.94.117203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830065
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.97.047201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007214713
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.97.227201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031773575
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tmag.2004.832256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061676960
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1108813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451522
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1136629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455054
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1184028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027539316
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.5373.2 schema:alternateName Aalto University
191 schema:name NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...