A gene-expression signature to predict survival in breast cancer across independent data sets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-03

AUTHORS

A Naderi, A E Teschendorff, N L Barbosa-Morais, S E Pinder, A R Green, D G Powe, J F R Robertson, S Aparicio, I O Ellis, J D Brenton, C Caldas

ABSTRACT

Prognostic signatures in breast cancer derived from microarray expression profiling have been reported by two independent groups. These signatures, however, have not been validated in external studies, making clinical application problematic. We performed microarray expression profiling of 135 early-stage tumors, from a cohort representative of the demographics of breast cancer. Using a recently proposed semisupervised method, we identified a prognostic signature of 70 genes that significantly correlated with survival (hazard ratio (HR): 5.97, 95% confidence interval: 3.0-11.9, P = 2.7e-07). In multivariate analysis, the signature performed independently of other standard prognostic classifiers such as the Nottingham Prognostic Index and the 'Adjuvant!' software. Using two different prognostic classification schemes and measures, nearest centroid (HR) and risk ordering (D-index), the 70-gene classifier was also found to be prognostic in two independent external data sets. Overall, the 70-gene set was prognostic in our study and the two external studies which collectively include 715 patients. In contrast, we found that the two previously described prognostic gene sets performed less optimally in external validation. Finally, a common prognostic module of 29 genes that associated with survival in both our cohort and the two external data sets was identified. In spite of these results, further studies that profile larger cohorts using a single microarray platform, will be needed before prospective clinical use of molecular classifiers can be contemplated. More... »

PAGES

1507

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.onc.1209920

DOI

http://dx.doi.org/10.1038/sj.onc.1209920

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024977029

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16936776


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Array Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naderi", 
        "givenName": "A", 
        "id": "sg:person.01371052023.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371052023.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teschendorff", 
        "givenName": "A E", 
        "id": "sg:person.01317257236.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317257236.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK", 
            "Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barbosa-Morais", 
        "givenName": "N L", 
        "id": "sg:person.0674725213.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674725213.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Pathology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinder", 
        "givenName": "S E", 
        "id": "sg:person.014576043464.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014576043464.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Molecular Medical Sciences, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "A R", 
        "id": "sg:person.016416665412.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416665412.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Molecular Medical Sciences, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powe", 
        "givenName": "D G", 
        "id": "sg:person.07527354646.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527354646.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Medical and Surgical Sciences, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robertson", 
        "givenName": "J F R", 
        "id": "sg:person.013163325712.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013163325712.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aparicio", 
        "givenName": "S", 
        "id": "sg:person.016606422374.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016606422374.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Histopathology, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellis", 
        "givenName": "I O", 
        "id": "sg:person.01054612302.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brenton", 
        "givenName": "J D", 
        "id": "sg:person.01223360024.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223360024.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caldas", 
        "givenName": "C", 
        "id": "sg:person.01072152660.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072152660.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1732912100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000610606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.06.178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001535254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409462102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004658815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008016941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019401433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa041588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022156409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450491", 
          "https://doi.org/10.1186/bcr1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450491", 
          "https://doi.org/10.1186/bcr1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024060421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-5-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025733146", 
          "https://doi.org/10.1186/1471-2164-5-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01840834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032983382", 
          "https://doi.org/10.1007/bf01840834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m402754200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033282293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2004.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035505159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/mb:30:2:151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036139232", 
          "https://doi.org/10.1385/mb:30:2:151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.082099299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa021967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038600096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053552", 
          "https://doi.org/10.1038/nmeth756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053552", 
          "https://doi.org/10.1038/nmeth756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17947-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047788005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050418449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-5-94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051184694", 
          "https://doi.org/10.1186/1471-2164-5-94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-04-3953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052469408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.03.3845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204218"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "Prognostic signatures in breast cancer derived from microarray expression profiling have been reported by two independent groups. These signatures, however, have not been validated in external studies, making clinical application problematic. We performed microarray expression profiling of 135 early-stage tumors, from a cohort representative of the demographics of breast cancer. Using a recently proposed semisupervised method, we identified a prognostic signature of 70 genes that significantly correlated with survival (hazard ratio (HR): 5.97, 95% confidence interval: 3.0-11.9, P = 2.7e-07). In multivariate analysis, the signature performed independently of other standard prognostic classifiers such as the Nottingham Prognostic Index and the 'Adjuvant!' software. Using two different prognostic classification schemes and measures, nearest centroid (HR) and risk ordering (D-index), the 70-gene classifier was also found to be prognostic in two independent external data sets. Overall, the 70-gene set was prognostic in our study and the two external studies which collectively include 715 patients. In contrast, we found that the two previously described prognostic gene sets performed less optimally in external validation. Finally, a common prognostic module of 29 genes that associated with survival in both our cohort and the two external data sets was identified. In spite of these results, further studies that profile larger cohorts using a single microarray platform, will be needed before prospective clinical use of molecular classifiers can be contemplated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.onc.1209920", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1097543", 
        "issn": [
          "0950-9232", 
          "1476-5594"
        ], 
        "name": "Oncogene", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "A gene-expression signature to predict survival in breast cancer across independent data sets", 
    "pagination": "1507", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76fd026f7d28b5b151d5dec127473913bc2fd96c03fea2ad8938663447a3a181"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16936776"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8711562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.onc.1209920"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024977029"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.onc.1209920", 
      "https://app.dimensions.ai/details/publication/pub.1024977029"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54008_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/1209920"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1209920'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1209920'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1209920'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1209920'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      61 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.onc.1209920 schema:about N1700fcf41ece461fa36aed579f18ae44
2 N2f0ba4045fe24ed1bb86fbf3c40c0cef
3 N4a544db16f7740dfaa7e43c364b6027b
4 N60baa7142dd64181a90e0056eec7cc64
5 N7892f60c70a04d5a9fab72a730957a4a
6 N8f488d96bba044bf84d6299af94625ab
7 Na9eed0b52a4e41eba3432e686902f3a4
8 Naa12f1014b104849af0ad42198e7676a
9 Nf227241472d84bd0ba67e86008916056
10 anzsrc-for:11
11 anzsrc-for:1112
12 schema:author Nc9988c4a31304b888904b1634c49d5d3
13 schema:citation sg:pub.10.1007/bf01840834
14 sg:pub.10.1038/415530a
15 sg:pub.10.1038/nmeth756
16 sg:pub.10.1186/1471-2164-5-9
17 sg:pub.10.1186/1471-2164-5-94
18 sg:pub.10.1186/bcr1325
19 sg:pub.10.1385/mb:30:2:151
20 https://doi.org/10.1002/sim.1621
21 https://doi.org/10.1016/j.ejca.2004.02.025
22 https://doi.org/10.1016/s0140-6736(05)17866-0
23 https://doi.org/10.1016/s0140-6736(05)17947-1
24 https://doi.org/10.1056/nejmoa021967
25 https://doi.org/10.1056/nejmoa041588
26 https://doi.org/10.1073/pnas.0409462102
27 https://doi.org/10.1073/pnas.082099299
28 https://doi.org/10.1073/pnas.1732912100
29 https://doi.org/10.1074/jbc.m402754200
30 https://doi.org/10.1093/bioinformatics/bth469
31 https://doi.org/10.1093/nar/gkg763
32 https://doi.org/10.1158/0008-5472.can-04-3953
33 https://doi.org/10.1200/jco.2005.03.3845
34 https://doi.org/10.1200/jco.2005.06.178
35 https://doi.org/10.1371/journal.pbio.0020108
36 schema:datePublished 2007-03
37 schema:datePublishedReg 2007-03-01
38 schema:description Prognostic signatures in breast cancer derived from microarray expression profiling have been reported by two independent groups. These signatures, however, have not been validated in external studies, making clinical application problematic. We performed microarray expression profiling of 135 early-stage tumors, from a cohort representative of the demographics of breast cancer. Using a recently proposed semisupervised method, we identified a prognostic signature of 70 genes that significantly correlated with survival (hazard ratio (HR): 5.97, 95% confidence interval: 3.0-11.9, P = 2.7e-07). In multivariate analysis, the signature performed independently of other standard prognostic classifiers such as the Nottingham Prognostic Index and the 'Adjuvant!' software. Using two different prognostic classification schemes and measures, nearest centroid (HR) and risk ordering (D-index), the 70-gene classifier was also found to be prognostic in two independent external data sets. Overall, the 70-gene set was prognostic in our study and the two external studies which collectively include 715 patients. In contrast, we found that the two previously described prognostic gene sets performed less optimally in external validation. Finally, a common prognostic module of 29 genes that associated with survival in both our cohort and the two external data sets was identified. In spite of these results, further studies that profile larger cohorts using a single microarray platform, will be needed before prospective clinical use of molecular classifiers can be contemplated.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N4ba6e603ba5c4ffbb8204745d32e1c11
43 Ndd76680aacf845b0af0b95ce6fe41729
44 sg:journal.1097543
45 schema:name A gene-expression signature to predict survival in breast cancer across independent data sets
46 schema:pagination 1507
47 schema:productId N0fb10945c1d541ffbf4c8bd8de37a2dd
48 N20aa2dd9c7664c01a862c0a9627051b4
49 N938ef1160b454decb2caf15128a50514
50 Nafbdb922e10c481e81092cc7f0b0fcf4
51 Nd3386d8a757c41c6b72507724754ddb5
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024977029
53 https://doi.org/10.1038/sj.onc.1209920
54 schema:sdDatePublished 2019-04-11T12:14
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N0763e04465cb410298d43db99e8c139a
57 schema:url https://www.nature.com/articles/1209920
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0763e04465cb410298d43db99e8c139a schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N0774fb6705b64998bc3b670ee11c39e3 rdf:first sg:person.07527354646.92
64 rdf:rest Nfa11817ae68c4c639cd314f6cfa83b11
65 N0fb10945c1d541ffbf4c8bd8de37a2dd schema:name nlm_unique_id
66 schema:value 8711562
67 rdf:type schema:PropertyValue
68 N1700fcf41ece461fa36aed579f18ae44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Reproducibility of Results
70 rdf:type schema:DefinedTerm
71 N18eb8e007d324f66aca30c08b95d474f rdf:first sg:person.01054612302.65
72 rdf:rest N81a0cda6786c47a58774e6c4b4ec0af4
73 N1b270ba6e2e5424795d58ace06c31dff rdf:first sg:person.016606422374.30
74 rdf:rest N18eb8e007d324f66aca30c08b95d474f
75 N1edfecde3f564e849e0b8c63fcba982a rdf:first sg:person.01317257236.92
76 rdf:rest N57ae11b88537488db92a52d7a8cc57c5
77 N20aa2dd9c7664c01a862c0a9627051b4 schema:name readcube_id
78 schema:value 76fd026f7d28b5b151d5dec127473913bc2fd96c03fea2ad8938663447a3a181
79 rdf:type schema:PropertyValue
80 N2f0ba4045fe24ed1bb86fbf3c40c0cef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Survival Analysis
82 rdf:type schema:DefinedTerm
83 N3f299b4b9a3e423aad64e7db36c83feb rdf:first sg:person.01072152660.47
84 rdf:rest rdf:nil
85 N4a544db16f7740dfaa7e43c364b6027b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Breast Neoplasms
87 rdf:type schema:DefinedTerm
88 N4ba6e603ba5c4ffbb8204745d32e1c11 schema:issueNumber 10
89 rdf:type schema:PublicationIssue
90 N57ae11b88537488db92a52d7a8cc57c5 rdf:first sg:person.0674725213.39
91 rdf:rest Nb3f6d2fd2cd14e99a200f64fb795b65b
92 N60baa7142dd64181a90e0056eec7cc64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Cohort Studies
94 rdf:type schema:DefinedTerm
95 N7892f60c70a04d5a9fab72a730957a4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Gene Expression Profiling
97 rdf:type schema:DefinedTerm
98 N81a0cda6786c47a58774e6c4b4ec0af4 rdf:first sg:person.01223360024.03
99 rdf:rest N3f299b4b9a3e423aad64e7db36c83feb
100 N8f488d96bba044bf84d6299af94625ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Female
102 rdf:type schema:DefinedTerm
103 N938ef1160b454decb2caf15128a50514 schema:name pubmed_id
104 schema:value 16936776
105 rdf:type schema:PropertyValue
106 Na8df54c28aa54c2faec440c35d86d90f rdf:first sg:person.016416665412.02
107 rdf:rest N0774fb6705b64998bc3b670ee11c39e3
108 Na9eed0b52a4e41eba3432e686902f3a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Humans
110 rdf:type schema:DefinedTerm
111 Naa12f1014b104849af0ad42198e7676a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Protein Array Analysis
113 rdf:type schema:DefinedTerm
114 Nafbdb922e10c481e81092cc7f0b0fcf4 schema:name dimensions_id
115 schema:value pub.1024977029
116 rdf:type schema:PropertyValue
117 Nb3f6d2fd2cd14e99a200f64fb795b65b rdf:first sg:person.014576043464.09
118 rdf:rest Na8df54c28aa54c2faec440c35d86d90f
119 Nc9988c4a31304b888904b1634c49d5d3 rdf:first sg:person.01371052023.82
120 rdf:rest N1edfecde3f564e849e0b8c63fcba982a
121 Nd3386d8a757c41c6b72507724754ddb5 schema:name doi
122 schema:value 10.1038/sj.onc.1209920
123 rdf:type schema:PropertyValue
124 Ndd76680aacf845b0af0b95ce6fe41729 schema:volumeNumber 26
125 rdf:type schema:PublicationVolume
126 Nf227241472d84bd0ba67e86008916056 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Prognosis
128 rdf:type schema:DefinedTerm
129 Nfa11817ae68c4c639cd314f6cfa83b11 rdf:first sg:person.013163325712.61
130 rdf:rest N1b270ba6e2e5424795d58ace06c31dff
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
135 schema:name Oncology and Carcinogenesis
136 rdf:type schema:DefinedTerm
137 sg:journal.1097543 schema:issn 0950-9232
138 1476-5594
139 schema:name Oncogene
140 rdf:type schema:Periodical
141 sg:person.01054612302.65 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
142 schema:familyName Ellis
143 schema:givenName I O
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65
145 rdf:type schema:Person
146 sg:person.01072152660.47 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
147 schema:familyName Caldas
148 schema:givenName C
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072152660.47
150 rdf:type schema:Person
151 sg:person.01223360024.03 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
152 schema:familyName Brenton
153 schema:givenName J D
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223360024.03
155 rdf:type schema:Person
156 sg:person.013163325712.61 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
157 schema:familyName Robertson
158 schema:givenName J F R
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013163325712.61
160 rdf:type schema:Person
161 sg:person.01317257236.92 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
162 schema:familyName Teschendorff
163 schema:givenName A E
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317257236.92
165 rdf:type schema:Person
166 sg:person.01371052023.82 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
167 schema:familyName Naderi
168 schema:givenName A
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371052023.82
170 rdf:type schema:Person
171 sg:person.014576043464.09 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
172 schema:familyName Pinder
173 schema:givenName S E
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014576043464.09
175 rdf:type schema:Person
176 sg:person.016416665412.02 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
177 schema:familyName Green
178 schema:givenName A R
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416665412.02
180 rdf:type schema:Person
181 sg:person.016606422374.30 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
182 schema:familyName Aparicio
183 schema:givenName S
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016606422374.30
185 rdf:type schema:Person
186 sg:person.0674725213.39 schema:affiliation https://www.grid.ac/institutes/grid.9983.b
187 schema:familyName Barbosa-Morais
188 schema:givenName N L
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674725213.39
190 rdf:type schema:Person
191 sg:person.07527354646.92 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
192 schema:familyName Powe
193 schema:givenName D G
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527354646.92
195 rdf:type schema:Person
196 sg:pub.10.1007/bf01840834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032983382
197 https://doi.org/10.1007/bf01840834
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
200 https://doi.org/10.1038/415530a
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmeth756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053552
203 https://doi.org/10.1038/nmeth756
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/1471-2164-5-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025733146
206 https://doi.org/10.1186/1471-2164-5-9
207 rdf:type schema:CreativeWork
208 sg:pub.10.1186/1471-2164-5-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051184694
209 https://doi.org/10.1186/1471-2164-5-94
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/bcr1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450491
212 https://doi.org/10.1186/bcr1325
213 rdf:type schema:CreativeWork
214 sg:pub.10.1385/mb:30:2:151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036139232
215 https://doi.org/10.1385/mb:30:2:151
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/sim.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024060421
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.ejca.2004.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035505159
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s0140-6736(05)17866-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014542455
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s0140-6736(05)17947-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788005
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1056/nejmoa021967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038600096
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1056/nejmoa041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022156409
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1073/pnas.0409462102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004658815
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1073/pnas.082099299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037994416
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1073/pnas.1732912100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000610606
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1074/jbc.m402754200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033282293
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/bth469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008016941
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/gkg763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019401433
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1158/0008-5472.can-04-3953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052469408
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1200/jco.2005.03.3845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204218
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1200/jco.2005.06.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001535254
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1371/journal.pbio.0020108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050418449
248 rdf:type schema:CreativeWork
249 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
250 schema:name Department of Histopathology, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, UK
251 Department of Medical and Surgical Sciences, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, UK
252 Department of Molecular Medical Sciences, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, UK
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
255 schema:name Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK
256 Department of Pathology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.9983.b schema:alternateName University of Lisbon
259 schema:name Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK
260 Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...