Ontology type: schema:ScholarlyArticle Open Access: True
2003-04-03
AUTHORSToshiaki Ohtsuka, Donald Buchsbaum, Patsy Oliver, Sharmila Makhija, Robert Kimberly, Tong Zhou
ABSTRACTUsing two agonistic monoclonal antibodies specific for each death receptor of TRAIL, 2E12 (anti-human DR4) and TRA-8 (anti-human DR5), we examined the signal transduction of the death receptors in combination with or without Q1chemotherapy agents such as Adriamycin (doxorubicin hydrochloride) and Cisplatin. Our results demonstrated that chemotherapy agents were able to enhance apoptosis-inducing activity of these antibodies against several different types of tumor cell lines through enhanced caspase activation. The combination of the antibodies and chemotherapy agents led to a synergistical activation of the JNK/p38 MAP kinase, which was mediated by MKK4. The combination also caused an increased release of cytochrome c and Smac/DIABLO from mitochondria in parallel with the profound loss of mitochondrial membrane potential. These results suggest that the enhanced activation of the JNK/p38 kinase and the mitochondrial apoptosis pathways play a crucial role in synergistic induction of the death receptor-mediated apoptosis by chemotherapy agents. Thus, the simultaneous targeting of cell surface death receptors with agonistic antibodies and the intracellular JNK/p38 and the mitochondrial death pathways with chemotherapy agents would enhance the efficacy and selectivity of both agents in cancer therapy. More... »
PAGES2034-2044
http://scigraph.springernature.com/pub.10.1038/sj.onc.1206290
DOIhttp://dx.doi.org/10.1038/sj.onc.1206290
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1047996205
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/12673208
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oncology and Carcinogenesis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Acetylcysteine",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adenocarcinoma",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Antibodies, Monoclonal",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Antibody Specificity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Antineoplastic Agents",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Apoptosis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Apoptosis Regulatory Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Breast Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carrier Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Caspases",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cisplatin",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cytochrome c Group",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "DNA Fragmentation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Doxorubicin",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Drug Synergism",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Enzyme Activation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Enzyme Inhibitors",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Intracellular Membranes",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Intracellular Signaling Peptides and Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "JNK Mitogen-Activated Protein Kinases",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "MAP Kinase Kinase 4",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "MAP Kinase Signaling System",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Membrane Potentials",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mitochondria",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mitochondrial Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mitogen-Activated Protein Kinase Kinases",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mitogen-Activated Protein Kinases",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Paclitaxel",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Receptors, TNF-Related Apoptosis-Inducing Ligand",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Receptors, Tumor Necrosis Factor",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Tumor Cells, Cultured",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "p38 Mitogen-Activated Protein Kinases",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Biomedical Research Laboratories, Sankyo Co., Ltd, 140\u20138710, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.410844.d",
"name": [
"Biomedical Research Laboratories, Sankyo Co., Ltd, 140\u20138710, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Ohtsuka",
"givenName": "Toshiaki",
"id": "sg:person.01217265717.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217265717.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Radiation Biology, University of Alabama at Birmingham, 35294, Birmingham, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265892.2",
"name": [
"Department of Radiation Biology, University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
],
"type": "Organization"
},
"familyName": "Buchsbaum",
"givenName": "Donald",
"id": "sg:person.01137705050.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137705050.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Radiation Biology, University of Alabama at Birmingham, 35294, Birmingham, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265892.2",
"name": [
"Department of Radiation Biology, University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
],
"type": "Organization"
},
"familyName": "Oliver",
"givenName": "Patsy",
"id": "sg:person.0725160173.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725160173.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Division of Gynecologic Oncology, University of Alabama at Birmingham, 35294, Birmingham, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265892.2",
"name": [
"Division of Gynecologic Oncology, University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
],
"type": "Organization"
},
"familyName": "Makhija",
"givenName": "Sharmila",
"id": "sg:person.0755422217.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755422217.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Medicine, University of Alabama at Birmingham, 35294, Birmingham, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265892.2",
"name": [
"Department of Medicine, University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
],
"type": "Organization"
},
"familyName": "Kimberly",
"givenName": "Robert",
"id": "sg:person.01304356355.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304356355.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Medicine, University of Alabama at Birmingham, 35294, Birmingham, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265892.2",
"name": [
"Department of Medicine, University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
],
"type": "Organization"
},
"familyName": "Zhou",
"givenName": "Tong",
"id": "sg:person.0664616100.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664616100.38"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/35008667",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012881410",
"https://doi.org/10.1038/35008667"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/74994",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019830643",
"https://doi.org/10.1038/74994"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/5505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038229847",
"https://doi.org/10.1038/5505"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1011336726649",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006241578",
"https://doi.org/10.1023/a:1011336726649"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/5517",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010598958",
"https://doi.org/10.1038/5517"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/4723",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001523482",
"https://doi.org/10.1038/4723"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/91000",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047281881",
"https://doi.org/10.1038/91000"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/75045",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044338034",
"https://doi.org/10.1038/75045"
],
"type": "CreativeWork"
}
],
"datePublished": "2003-04-03",
"datePublishedReg": "2003-04-03",
"description": "Using two agonistic monoclonal antibodies specific for each death receptor of TRAIL, 2E12 (anti-human DR4) and TRA-8 (anti-human DR5), we examined the signal transduction of the death receptors in combination with or without Q1chemotherapy agents such as Adriamycin (doxorubicin hydrochloride) and Cisplatin. Our results demonstrated that chemotherapy agents were able to enhance apoptosis-inducing activity of these antibodies against several different types of tumor cell lines through enhanced caspase activation. The combination of the antibodies and chemotherapy agents led to a synergistical activation of the JNK/p38 MAP kinase, which was mediated by MKK4. The combination also caused an increased release of cytochrome c and Smac/DIABLO from mitochondria in parallel with the profound loss of mitochondrial membrane potential. These results suggest that the enhanced activation of the JNK/p38 kinase and the mitochondrial apoptosis pathways play a crucial role in synergistic induction of the death receptor-mediated apoptosis by chemotherapy agents. Thus, the simultaneous targeting of cell surface death receptors with agonistic antibodies and the intracellular JNK/p38 and the mitochondrial death pathways with chemotherapy agents would enhance the efficacy and selectivity of both agents in cancer therapy.",
"genre": "article",
"id": "sg:pub.10.1038/sj.onc.1206290",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2440147",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2440161",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2567549",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.7133716",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1097543",
"issn": [
"0950-9232",
"1476-5594"
],
"name": "Oncogene",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "13",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"keywords": [
"mitochondrial death pathway",
"JNK/p38",
"death receptors",
"death pathways",
"JNK/p38 kinases",
"JNK/p38 MAP kinase",
"cell surface death receptor",
"death receptor-mediated apoptosis",
"Smac/DIABLO",
"synergistic induction",
"surface death receptor",
"receptor-mediated apoptosis",
"mitochondrial apoptosis pathway",
"p38 MAP kinase",
"mitochondrial membrane potential",
"apoptosis-inducing activity",
"signal transduction",
"caspase activation",
"MAP kinase",
"p38 kinase",
"apoptosis pathway",
"cytochrome c",
"tumor cell apoptosis",
"tumor cell lines",
"agonistic monoclonal antibody",
"cell apoptosis",
"cell lines",
"membrane potential",
"kinase",
"pathway",
"p38",
"simultaneous targeting",
"enhanced activation",
"apoptosis",
"agonistic antibodies",
"activation",
"crucial role",
"cancer therapy",
"receptors",
"MKK4",
"induction",
"transduction",
"TRA-8",
"monoclonal antibodies",
"DIABLO",
"mitochondria",
"profound loss",
"targeting",
"antibodies",
"chemotherapy agents",
"role",
"agents",
"lines",
"activity",
"combination",
"receptor antibodies",
"trails",
"release",
"loss",
"cisplatin",
"potential",
"different types",
"types",
"results",
"adriamycin",
"parallel",
"selectivity",
"therapy",
"efficacy"
],
"name": "Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway",
"pagination": "2034-2044",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1047996205"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/sj.onc.1206290"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"12673208"
]
}
],
"sameAs": [
"https://doi.org/10.1038/sj.onc.1206290",
"https://app.dimensions.ai/details/publication/pub.1047996205"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_377.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/sj.onc.1206290"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1206290'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1206290'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1206290'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1206290'
This table displays all metadata directly associated to this object as RDF triples.
353 TRIPLES
22 PREDICATES
138 URIs
121 LITERALS
41 BLANK NODES