Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-07

AUTHORS

Gal Akiri, Dorit Nahari, Yiftach Finkelstein, Shu-Yun Le, Orna Elroy-Stein, Ben-Zion Levi

ABSTRACT

Vascular Endothelial Growth Factor (VEGF) is a very potent angiogenic agent that has a central role in normal physiological angiogenesis as well as in tumor angiogenesis. VEGF expression is induced by hypoxia and hypoglycemia, and thus was suggested to promote neovascularization during tumor outgrowth. Yet, the molecular mechanism that governs VEGF expression is not fully characterized. VEGF induction is attributed in part to increased levels of transcription and RNA stability. Previously, we demonstrated that the 5' Untranslated Region (5' UTR) of VEGF has an important regulatory role in its expression. VEGF has an exceptionally long 5' UTR (1038 bp) which is highly rich in G+C nucleotides. This suggests that secondary structures in the 5' UTR might be essential for VEGF expression through transcriptional and post-transcriptional control mechanisms, as demonstrated for other growth factors. In this communication, we provide evidence that a computer predicted Internal Ribosome Entry Site (IRES) structure is biologically active and is located at the 3' end of the UTR. In addition, the results demonstrate that an alternative transcriptional initiation site for VEGF exists in the 5' UTR of VEGF. This alternative initiation site is 633 bp downstream of the main transcription start site and the resulting 5' UTR includes mainly the IRES structure. Therefore, our results suggest that VEGF is subjected to regulation at either translational level through a mechanism of ribosome internal initiation and/or transcriptional level through alternative initiation. More... »

PAGES

1202019

Journal

TITLE

Oncogene

ISSUE

2

VOLUME

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.onc.1202019

DOI

http://dx.doi.org/10.1038/sj.onc.1202019

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044480942

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9674707


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endothelial Growth Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphokines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Chain Initiation, Translational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Sequences, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ribosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Endothelial Growth Factor A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Endothelial Growth Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Food Engineering and Biotechnology, Technion, Haifa 32000, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akiri", 
        "givenName": "Gal", 
        "id": "sg:person.01157266022.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157266022.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Food Engineering and Biotechnology, Technion, Haifa 32000, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nahari", 
        "givenName": "Dorit", 
        "id": "sg:person.01042712366.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042712366.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Food Engineering and Biotechnology, Technion, Haifa 32000, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finkelstein", 
        "givenName": "Yiftach", 
        "id": "sg:person.01177541230.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177541230.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "The Laboratory of Experimental and Computational Biology, DBS, NCI, NIH, Frederick, Maryland 21702, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le", 
        "givenName": "Shu-Yun", 
        "id": "sg:person.0750200045.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750200045.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elroy-Stein", 
        "givenName": "Orna", 
        "id": "sg:person.01313406367.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313406367.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Food Engineering and Biotechnology, Technion, Haifa 32000, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levi", 
        "givenName": "Ben-Zion", 
        "id": "sg:person.01022602205.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022602205.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-07", 
    "datePublishedReg": "1998-07-01", 
    "description": "Vascular Endothelial Growth Factor (VEGF) is a very potent angiogenic agent that has a central role in normal physiological angiogenesis as well as in tumor angiogenesis. VEGF expression is induced by hypoxia and hypoglycemia, and thus was suggested to promote neovascularization during tumor outgrowth. Yet, the molecular mechanism that governs VEGF expression is not fully characterized. VEGF induction is attributed in part to increased levels of transcription and RNA stability. Previously, we demonstrated that the 5' Untranslated Region (5' UTR) of VEGF has an important regulatory role in its expression. VEGF has an exceptionally long 5' UTR (1038 bp) which is highly rich in G+C nucleotides. This suggests that secondary structures in the 5' UTR might be essential for VEGF expression through transcriptional and post-transcriptional control mechanisms, as demonstrated for other growth factors. In this communication, we provide evidence that a computer predicted Internal Ribosome Entry Site (IRES) structure is biologically active and is located at the 3' end of the UTR. In addition, the results demonstrate that an alternative transcriptional initiation site for VEGF exists in the 5' UTR of VEGF. This alternative initiation site is 633 bp downstream of the main transcription start site and the resulting 5' UTR includes mainly the IRES structure. Therefore, our results suggest that VEGF is subjected to regulation at either translational level through a mechanism of ribosome internal initiation and/or transcriptional level through alternative initiation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.onc.1202019", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1097543", 
        "issn": [
          "0950-9232", 
          "1476-5594"
        ], 
        "name": "Oncogene", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription", 
    "pagination": "1202019", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d3e11ae3d9ab9822b21488f86cfd5b1df70197807afa399c1d4d42fd5d64aca3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9674707"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8711562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.onc.1202019"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044480942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.onc.1202019", 
      "https://app.dimensions.ai/details/publication/pub.1044480942"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118336_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/1202019"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1202019'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1202019'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1202019'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.onc.1202019'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      20 PREDICATES      46 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.onc.1202019 schema:about N007cda8493a4479f9a1c7195ebab3d7c
2 N291a4bb1bd974b01a0eaa411fb5a1add
3 N2f14c546377e4ad9be3c0a3a4a4e679e
4 N330daae50cae4bea9f990f2c41c2dbe6
5 N40d31eeca1294529be03be40112b61c5
6 N5388218d5be64142bbe87c98269ed886
7 N7f30a6f83b4444a9b0b4524387f628ac
8 N89653b7a48b34b339f19a64c1a316653
9 N8afecb8a84484081afc04b5ce8ba210c
10 N95195965b3f04c309b9e19662647fe19
11 N9a0ba1f15b094b1f9131b46b26df6617
12 N9c097fe9d25d42c79cf7478ac36b9f8e
13 Nb4d8994259bf47799da577bcb0228619
14 Nc8a6635581454c12bfa30f2fcb122b09
15 Nca4c2be3e68d4e3faf1e237062d5a449
16 Nd02be4d16ebb4d65b5d793c1b1f3be24
17 Nf6fa66e031f442fa99c41d79ce3a2072
18 anzsrc-for:06
19 anzsrc-for:0601
20 schema:author N37ca495e02fe47f3a302379fe3a20bf7
21 schema:datePublished 1998-07
22 schema:datePublishedReg 1998-07-01
23 schema:description Vascular Endothelial Growth Factor (VEGF) is a very potent angiogenic agent that has a central role in normal physiological angiogenesis as well as in tumor angiogenesis. VEGF expression is induced by hypoxia and hypoglycemia, and thus was suggested to promote neovascularization during tumor outgrowth. Yet, the molecular mechanism that governs VEGF expression is not fully characterized. VEGF induction is attributed in part to increased levels of transcription and RNA stability. Previously, we demonstrated that the 5' Untranslated Region (5' UTR) of VEGF has an important regulatory role in its expression. VEGF has an exceptionally long 5' UTR (1038 bp) which is highly rich in G+C nucleotides. This suggests that secondary structures in the 5' UTR might be essential for VEGF expression through transcriptional and post-transcriptional control mechanisms, as demonstrated for other growth factors. In this communication, we provide evidence that a computer predicted Internal Ribosome Entry Site (IRES) structure is biologically active and is located at the 3' end of the UTR. In addition, the results demonstrate that an alternative transcriptional initiation site for VEGF exists in the 5' UTR of VEGF. This alternative initiation site is 633 bp downstream of the main transcription start site and the resulting 5' UTR includes mainly the IRES structure. Therefore, our results suggest that VEGF is subjected to regulation at either translational level through a mechanism of ribosome internal initiation and/or transcriptional level through alternative initiation.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N5d83735bb32d40e9abfdd098bd6b886d
28 N65c3495e7bff45fcb826294890af48a1
29 sg:journal.1097543
30 schema:name Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription
31 schema:pagination 1202019
32 schema:productId N284eab979143425ba6e8e03a379bdc2d
33 N3de4bb1fa08f4e4da905d2630528dfd1
34 N56f43639fbde46cbaf20b4956b861fae
35 Ndba6490ce0ef49818aeb257c4add2a72
36 Nfccfdd2cc47344d5890143a7b9e6fabc
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044480942
38 https://doi.org/10.1038/sj.onc.1202019
39 schema:sdDatePublished 2019-04-11T12:06
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Ne6d52c09aee84e8d92d9f872039c5d88
42 schema:url http://www.nature.com/articles/1202019
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N007cda8493a4479f9a1c7195ebab3d7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Lymphokines
48 rdf:type schema:DefinedTerm
49 N274e827e9072490c81c8d0c6fda4bb77 rdf:first sg:person.01022602205.49
50 rdf:rest rdf:nil
51 N284eab979143425ba6e8e03a379bdc2d schema:name pubmed_id
52 schema:value 9674707
53 rdf:type schema:PropertyValue
54 N291a4bb1bd974b01a0eaa411fb5a1add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Vascular Endothelial Growth Factor A
56 rdf:type schema:DefinedTerm
57 N2d0e5150b73d4a58a566c9e50a740a5b rdf:first sg:person.0750200045.41
58 rdf:rest N8a196ba1ced0494797f4d6c0b961d893
59 N2f14c546377e4ad9be3c0a3a4a4e679e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name RNA, Messenger
61 rdf:type schema:DefinedTerm
62 N330daae50cae4bea9f990f2c41c2dbe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Binding Sites
64 rdf:type schema:DefinedTerm
65 N37ca495e02fe47f3a302379fe3a20bf7 rdf:first sg:person.01157266022.71
66 rdf:rest Nf5ee4cf1403d4b25aac175a45e4bdf57
67 N3de4bb1fa08f4e4da905d2630528dfd1 schema:name readcube_id
68 schema:value d3e11ae3d9ab9822b21488f86cfd5b1df70197807afa399c1d4d42fd5d64aca3
69 rdf:type schema:PropertyValue
70 N40d31eeca1294529be03be40112b61c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Base Sequence
72 rdf:type schema:DefinedTerm
73 N5388218d5be64142bbe87c98269ed886 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Gene Expression Regulation
75 rdf:type schema:DefinedTerm
76 N56f43639fbde46cbaf20b4956b861fae schema:name nlm_unique_id
77 schema:value 8711562
78 rdf:type schema:PropertyValue
79 N5d83735bb32d40e9abfdd098bd6b886d schema:volumeNumber 17
80 rdf:type schema:PublicationVolume
81 N65c3495e7bff45fcb826294890af48a1 schema:issueNumber 2
82 rdf:type schema:PublicationIssue
83 N7f30a6f83b4444a9b0b4524387f628ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Models, Molecular
85 rdf:type schema:DefinedTerm
86 N89653b7a48b34b339f19a64c1a316653 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Nucleic Acid Conformation
88 rdf:type schema:DefinedTerm
89 N8a196ba1ced0494797f4d6c0b961d893 rdf:first sg:person.01313406367.82
90 rdf:rest N274e827e9072490c81c8d0c6fda4bb77
91 N8afecb8a84484081afc04b5ce8ba210c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Transcription, Genetic
93 rdf:type schema:DefinedTerm
94 N95195965b3f04c309b9e19662647fe19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Regulatory Sequences, Nucleic Acid
96 rdf:type schema:DefinedTerm
97 N9a0ba1f15b094b1f9131b46b26df6617 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Molecular Sequence Data
99 rdf:type schema:DefinedTerm
100 N9c097fe9d25d42c79cf7478ac36b9f8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Endothelial Growth Factors
102 rdf:type schema:DefinedTerm
103 Nb4d8994259bf47799da577bcb0228619 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Computer Simulation
105 rdf:type schema:DefinedTerm
106 Nc8a6635581454c12bfa30f2fcb122b09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Sequence Homology, Amino Acid
108 rdf:type schema:DefinedTerm
109 Nca4c2be3e68d4e3faf1e237062d5a449 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Vascular Endothelial Growth Factors
111 rdf:type schema:DefinedTerm
112 Ncfddb2f3e55942c388fd7d387a47d21a rdf:first sg:person.01177541230.25
113 rdf:rest N2d0e5150b73d4a58a566c9e50a740a5b
114 Nd02be4d16ebb4d65b5d793c1b1f3be24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Ribosomes
116 rdf:type schema:DefinedTerm
117 Nd7420cf5475646708acc39b8ec66bb04 schema:name The Laboratory of Experimental and Computational Biology, DBS, NCI, NIH, Frederick, Maryland 21702, USA
118 rdf:type schema:Organization
119 Ndba6490ce0ef49818aeb257c4add2a72 schema:name dimensions_id
120 schema:value pub.1044480942
121 rdf:type schema:PropertyValue
122 Ne6d52c09aee84e8d92d9f872039c5d88 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nf5ee4cf1403d4b25aac175a45e4bdf57 rdf:first sg:person.01042712366.67
125 rdf:rest Ncfddb2f3e55942c388fd7d387a47d21a
126 Nf6fa66e031f442fa99c41d79ce3a2072 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Peptide Chain Initiation, Translational
128 rdf:type schema:DefinedTerm
129 Nfccfdd2cc47344d5890143a7b9e6fabc schema:name doi
130 schema:value 10.1038/sj.onc.1202019
131 rdf:type schema:PropertyValue
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biochemistry and Cell Biology
137 rdf:type schema:DefinedTerm
138 sg:journal.1097543 schema:issn 0950-9232
139 1476-5594
140 schema:name Oncogene
141 rdf:type schema:Periodical
142 sg:person.01022602205.49 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
143 schema:familyName Levi
144 schema:givenName Ben-Zion
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022602205.49
146 rdf:type schema:Person
147 sg:person.01042712366.67 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
148 schema:familyName Nahari
149 schema:givenName Dorit
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042712366.67
151 rdf:type schema:Person
152 sg:person.01157266022.71 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
153 schema:familyName Akiri
154 schema:givenName Gal
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157266022.71
156 rdf:type schema:Person
157 sg:person.01177541230.25 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
158 schema:familyName Finkelstein
159 schema:givenName Yiftach
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177541230.25
161 rdf:type schema:Person
162 sg:person.01313406367.82 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
163 schema:familyName Elroy-Stein
164 schema:givenName Orna
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313406367.82
166 rdf:type schema:Person
167 sg:person.0750200045.41 schema:affiliation Nd7420cf5475646708acc39b8ec66bb04
168 schema:familyName Le
169 schema:givenName Shu-Yun
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750200045.41
171 rdf:type schema:Person
172 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
173 schema:name Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
176 schema:name Department of Food Engineering and Biotechnology, Technion, Haifa 32000, Israel
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...