Community structure of biofilms on ennobled stainless steel in Baltic Sea water View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-12

AUTHORS

M Kolari, K Mattila, R Mikkola, M S Salkinoja-Salonen

ABSTRACT

400 mV), the biofilm on the steel surface was characterized using confocal laser scanning microscopy (CLSM) in combination with functional and phylogenetic stains. The biofilm consisted of microbial cell clusters covering 10–20% of the surface. The clusters were loaf-formed, with a basal diameter of 20–150 μm, 5–20 per mm−2, each holding >104 cells in a density of 1–5 × 107 cells mm−3. The typical cluster contained mainly small Gram-negative bacteria (binding the EUB338 probe when hybridized in situ on the steel surface), and often carried one to three spherical colonies, either homogeneously composed of large Gram-negative cocci or more often small bacterial rods in high density, 108–109 cells mm−3. The clusters in live biofilms contained no pores, and clusters over 25 μm in diameter had a core nonpenetrable to fluorescent nucleic acid stains and ConA lectin stain. Fluorescently-tagged ConA stained cells at a depth of <5 μm, indicating the presence of cells with α-d-mannosyl and α-d-glucosyl residues on surfaces. ethidium bromide (log Kow −0.38) penetrated deeper (17 μm in 15 min, corresponding to >10 cells in a stack) into the cluster than did the less polar dyes SYTO 16 (log Kow 1.48) and acridine orange (log Kow 1.24), which stained five cells in a stack. Fluorescent hydrophobic and hydrophilic latex beads (diameter 0.02, 0.1 or 1.0 μm) coated patchwise the cluster surface facing the water, but penetrated only to depths of ⩽2 μm indicating a permeability barrier. About 1/3 of the stainable cells hybridized in situ with Alf1b, while fewer than 1/7 hybridized to GAM42, probes targeted towards α- and γ-Proteobacteria, respectively. Our results represent a microscopic description of an ennobling biofilm, where the ennoblement could follow the sequence of redox events as suggested by the model of Dickinson and Lewandowski (1996) for the structure of corrosive biofilms on a steel surface. More... »

PAGES

261-274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.jim.2900588

DOI

http://dx.doi.org/10.1038/sj.jim.2900588

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005247050


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "University of Helsinki, Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014 University of Helsinki, Finland, FI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kolari", 
        "givenName": "M", 
        "id": "sg:person.01036241366.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036241366.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "University of Helsinki, Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014 University of Helsinki, Finland, FI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mattila", 
        "givenName": "K", 
        "id": "sg:person.014112155025.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014112155025.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "University of Helsinki, Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014 University of Helsinki, Finland, FI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikkola", 
        "givenName": "R", 
        "id": "sg:person.01012357425.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012357425.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "University of Helsinki, Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014 University of Helsinki, Finland, FI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salkinoja-Salonen", 
        "givenName": "M S", 
        "id": "sg:person.046652271.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.046652271.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00491897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012201282", 
          "https://doi.org/10.1007/bf00491897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00491897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012201282", 
          "https://doi.org/10.1007/bf00491897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511525353.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021750861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/345060a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024140999", 
          "https://doi.org/10.1038/345060a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08927019609386272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025450737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.1994.tb00108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026285462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.1994.tb00108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026285462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02342136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041742554", 
          "https://doi.org/10.1007/bf02342136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02342136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041742554", 
          "https://doi.org/10.1007/bf02342136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-42-4-645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060348733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-47-4-939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060349666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.174.15.5072-5078.1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062720729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.176.8.2137-2142.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062723597"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-12", 
    "datePublishedReg": "1998-12-01", 
    "description": "400 mV), the biofilm on the steel surface was characterized using confocal laser scanning microscopy (CLSM) in combination with functional and phylogenetic stains. The biofilm consisted of microbial cell clusters covering 10\u201320% of the surface. The clusters were loaf-formed, with a basal diameter of 20\u2013150 \u03bcm, 5\u201320 per mm\u22122, each holding >104 cells in a density of 1\u20135 \u00d7 107 cells mm\u22123. The typical cluster contained mainly small Gram-negative bacteria (binding the EUB338 probe when hybridized in situ on the steel surface), and often carried one to three spherical colonies, either homogeneously composed of large Gram-negative cocci or more often small bacterial rods in high density, 108\u2013109 cells mm\u22123. The clusters in live biofilms contained no pores, and clusters over 25 \u03bcm in diameter had a core nonpenetrable to fluorescent nucleic acid stains and ConA lectin stain. Fluorescently-tagged ConA stained cells at a depth of <5 \u03bcm, indicating the presence of cells with \u03b1-d-mannosyl and \u03b1-d-glucosyl residues on surfaces. ethidium bromide (log Kow \u22120.38) penetrated deeper (17 \u03bcm in 15 min, corresponding to >10 cells in a stack) into the cluster than did the less polar dyes SYTO 16 (log Kow 1.48) and acridine orange (log Kow 1.24), which stained five cells in a stack. Fluorescent hydrophobic and hydrophilic latex beads (diameter 0.02, 0.1 or 1.0 \u03bcm) coated patchwise the cluster surface facing the water, but penetrated only to depths of \u2a7d2 \u03bcm indicating a permeability barrier. About 1/3 of the stainable cells hybridized in situ with Alf1b, while fewer than 1/7 hybridized to GAM42, probes targeted towards \u03b1- and \u03b3-Proteobacteria, respectively. Our results represent a microscopic description of an ennobling biofilm, where the ennoblement could follow the sequence of redox events as suggested by the model of Dickinson and Lewandowski (1996) for the structure of corrosive biofilms on a steel surface.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.jim.2900588", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1096599", 
        "issn": [
          "1367-5435", 
          "1476-5535"
        ], 
        "name": "Journal of Industrial Microbiology & Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Community structure of biofilms on ennobled stainless steel in Baltic Sea water", 
    "pagination": "261-274", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "18ffca9a7edc94beb3a461332c805986246e75b2733283de269b8b9e3c1d3f5e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.jim.2900588"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005247050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.jim.2900588", 
      "https://app.dimensions.ai/details/publication/pub.1005247050"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1038/sj.jim.2900588"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.jim.2900588'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.jim.2900588'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.jim.2900588'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.jim.2900588'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.jim.2900588 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N9fe7a6b94b4c48d98399454e15dbbe4a
4 schema:citation sg:pub.10.1007/bf00491897
5 sg:pub.10.1007/bf02342136
6 sg:pub.10.1038/345060a0
7 https://doi.org/10.1017/cbo9780511525353.003
8 https://doi.org/10.1080/08927019609386272
9 https://doi.org/10.1099/00207713-42-4-645
10 https://doi.org/10.1099/00207713-47-4-939
11 https://doi.org/10.1111/j.1574-6976.1994.tb00108.x
12 https://doi.org/10.1128/jb.174.15.5072-5078.1992
13 https://doi.org/10.1128/jb.176.8.2137-2142.1994
14 schema:datePublished 1998-12
15 schema:datePublishedReg 1998-12-01
16 schema:description 400 mV), the biofilm on the steel surface was characterized using confocal laser scanning microscopy (CLSM) in combination with functional and phylogenetic stains. The biofilm consisted of microbial cell clusters covering 10–20% of the surface. The clusters were loaf-formed, with a basal diameter of 20–150 μm, 5–20 per mm−2, each holding >104 cells in a density of 1–5 × 107 cells mm−3. The typical cluster contained mainly small Gram-negative bacteria (binding the EUB338 probe when hybridized in situ on the steel surface), and often carried one to three spherical colonies, either homogeneously composed of large Gram-negative cocci or more often small bacterial rods in high density, 108–109 cells mm−3. The clusters in live biofilms contained no pores, and clusters over 25 μm in diameter had a core nonpenetrable to fluorescent nucleic acid stains and ConA lectin stain. Fluorescently-tagged ConA stained cells at a depth of <5 μm, indicating the presence of cells with α-d-mannosyl and α-d-glucosyl residues on surfaces. ethidium bromide (log Kow −0.38) penetrated deeper (17 μm in 15 min, corresponding to >10 cells in a stack) into the cluster than did the less polar dyes SYTO 16 (log Kow 1.48) and acridine orange (log Kow 1.24), which stained five cells in a stack. Fluorescent hydrophobic and hydrophilic latex beads (diameter 0.02, 0.1 or 1.0 μm) coated patchwise the cluster surface facing the water, but penetrated only to depths of ⩽2 μm indicating a permeability barrier. About 1/3 of the stainable cells hybridized in situ with Alf1b, while fewer than 1/7 hybridized to GAM42, probes targeted towards α- and γ-Proteobacteria, respectively. Our results represent a microscopic description of an ennobling biofilm, where the ennoblement could follow the sequence of redox events as suggested by the model of Dickinson and Lewandowski (1996) for the structure of corrosive biofilms on a steel surface.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N152936d356bc41d28250cda42095a4d8
21 N3ec9fe4de01a45c4b5ef232cbffdad31
22 sg:journal.1096599
23 schema:name Community structure of biofilms on ennobled stainless steel in Baltic Sea water
24 schema:pagination 261-274
25 schema:productId N795615ce37474befb178267a0e7fa543
26 N9dc30bae579d450598196ea69e0640b4
27 Nd03958bdc2ff47f69fc2301d31797281
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005247050
29 https://doi.org/10.1038/sj.jim.2900588
30 schema:sdDatePublished 2019-04-10T15:48
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N868aa77683f348daa322dc849961c56a
33 schema:url http://link.springer.com/10.1038/sj.jim.2900588
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N152936d356bc41d28250cda42095a4d8 schema:issueNumber 6
38 rdf:type schema:PublicationIssue
39 N3ec9fe4de01a45c4b5ef232cbffdad31 schema:volumeNumber 21
40 rdf:type schema:PublicationVolume
41 N62944314aee64df49b9956506a9a48d3 rdf:first sg:person.014112155025.36
42 rdf:rest Na26fcf6ad73f40b4b3ac96b1cbaa76ab
43 N795615ce37474befb178267a0e7fa543 schema:name dimensions_id
44 schema:value pub.1005247050
45 rdf:type schema:PropertyValue
46 N868aa77683f348daa322dc849961c56a schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N93fccd8343d14c04957d3b31b71beaf9 rdf:first sg:person.046652271.28
49 rdf:rest rdf:nil
50 N9dc30bae579d450598196ea69e0640b4 schema:name doi
51 schema:value 10.1038/sj.jim.2900588
52 rdf:type schema:PropertyValue
53 N9fe7a6b94b4c48d98399454e15dbbe4a rdf:first sg:person.01036241366.04
54 rdf:rest N62944314aee64df49b9956506a9a48d3
55 Na26fcf6ad73f40b4b3ac96b1cbaa76ab rdf:first sg:person.01012357425.08
56 rdf:rest N93fccd8343d14c04957d3b31b71beaf9
57 Nd03958bdc2ff47f69fc2301d31797281 schema:name readcube_id
58 schema:value 18ffca9a7edc94beb3a461332c805986246e75b2733283de269b8b9e3c1d3f5e
59 rdf:type schema:PropertyValue
60 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
61 schema:name Biological Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
64 schema:name Microbiology
65 rdf:type schema:DefinedTerm
66 sg:journal.1096599 schema:issn 1367-5435
67 1476-5535
68 schema:name Journal of Industrial Microbiology & Biotechnology
69 rdf:type schema:Periodical
70 sg:person.01012357425.08 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
71 schema:familyName Mikkola
72 schema:givenName R
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012357425.08
74 rdf:type schema:Person
75 sg:person.01036241366.04 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
76 schema:familyName Kolari
77 schema:givenName M
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036241366.04
79 rdf:type schema:Person
80 sg:person.014112155025.36 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
81 schema:familyName Mattila
82 schema:givenName K
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014112155025.36
84 rdf:type schema:Person
85 sg:person.046652271.28 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
86 schema:familyName Salkinoja-Salonen
87 schema:givenName M S
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.046652271.28
89 rdf:type schema:Person
90 sg:pub.10.1007/bf00491897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012201282
91 https://doi.org/10.1007/bf00491897
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02342136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041742554
94 https://doi.org/10.1007/bf02342136
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/345060a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024140999
97 https://doi.org/10.1038/345060a0
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1017/cbo9780511525353.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021750861
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/08927019609386272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450737
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1099/00207713-42-4-645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060348733
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1099/00207713-47-4-939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060349666
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1111/j.1574-6976.1994.tb00108.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026285462
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1128/jb.174.15.5072-5078.1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062720729
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1128/jb.176.8.2137-2142.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062723597
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
114 schema:name University of Helsinki, Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014 University of Helsinki, Finland, FI
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...