Reconstruction of methylmercury intakes in indigenous populations from biomarker data. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-01

AUTHORS

Nathalie H Gosselin, Robert C Brunet, Gaétan Carrier, Michèle Bouchard, Mark Feeley

ABSTRACT

Significant amounts of methylmercury (MeHg) can bioaccumulate in fish and sea mammals. To monitor MeHg exposure in individuals, organic and inorganic mercury are often measured in blood samples or in hair strands, the latter being by far the best integrator of past exposure. With knowledge of the MeHg kinetics in humans, the levels of both biomarkers can be related to MeHg body burden and intakes. In the present study, we use the toxicokinetic model of Carrier et al. (2001) describing the distribution and excretion of MeHg in humans, to reconstruct the history of MeHg intakes of indigenous women of the Inuvik region in Canada starting from total mercury concentrations in hair segments. From these reconstructed MeHg intakes, the corresponding simulated mercury blood concentrations are found to be good predictors of the concentrations actually measured in blood samples. An important conclusion of this study is that, for almost all subjects, the reconstructed history of their MeHg intakes provides much lower intake values than intakes estimated from questionnaires on food consumption and estimated MeHg levels in these foods; the mean value of the reconstructed MeHg intakes is 0.03 microg/kg/day compared with the mean value of 0.20 microg/kg/day obtained from questionnaires. The model was also used to back-calculate the MeHg intakes from concentrations in hair strands collected from aboriginals of the Amazon region in Brazil, a population significantly more exposed than the population of the Inuvik region. More... »

PAGES

19-29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.jes.7500433

DOI

http://dx.doi.org/10.1038/sj.jes.7500433

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1056648527

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16007116


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Burden", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brazil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Canada", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Contamination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hair", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mercury", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methylmercury Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seafood", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Montreal", 
          "id": "https://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "Chaire en analyse des risques toxicologiques pour la sant\u00e9 humaine and D\u00e9partement de sant\u00e9 environnementale et sant\u00e9 au travail, Facult\u00e9 de M\u00e9decine, Universit\u00e9 de Montr\u00e9al, PO Box 6128, Main Station, Montreal, Quebec, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gosselin", 
        "givenName": "Nathalie H", 
        "id": "sg:person.016030230764.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016030230764.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Brunet", 
        "givenName": "Robert C", 
        "id": "sg:person.01133161060.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133161060.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Carrier", 
        "givenName": "Ga\u00e9tan", 
        "id": "sg:person.01116271136.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116271136.60"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bouchard", 
        "givenName": "Mich\u00e8le", 
        "id": "sg:person.01272624033.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272624033.75"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Feeley", 
        "givenName": "Mark", 
        "id": "sg:person.01361041234.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361041234.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00039896.1982.10667578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001764188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039896.1972.10666141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006580786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039890109604467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011358675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018378207932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012385918", 
          "https://doi.org/10.1023/a:1018378207932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039896.1980.10667486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015016583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/taap.2000.9113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017294435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007017116171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022121035", 
          "https://doi.org/10.1023/a:1007017116171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/taap.1994.1204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022256858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039896.1969.10666872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025774491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/enrs.1998.3846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032930684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-9697(00)00835-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034662261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/rtph.1997.1105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039469956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410070412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040030681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039896.1974.10666505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043097905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/074823379701300401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043959433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/074823379701300401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043959433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039896.1980.10667458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044076312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/00099308109035071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049973787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.181.4096.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062507832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096032718400300205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063900656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096032718400300205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063900656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096032718800700204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063901130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096032718800700204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063901130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.011091291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064737287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080740759", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a113651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081873647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082954144", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082954154", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083063064", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01", 
    "datePublishedReg": "2006-01-01", 
    "description": "Significant amounts of methylmercury (MeHg) can bioaccumulate in fish and sea mammals. To monitor MeHg exposure in individuals, organic and inorganic mercury are often measured in blood samples or in hair strands, the latter being by far the best integrator of past exposure. With knowledge of the MeHg kinetics in humans, the levels of both biomarkers can be related to MeHg body burden and intakes. In the present study, we use the toxicokinetic model of Carrier et al. (2001) describing the distribution and excretion of MeHg in humans, to reconstruct the history of MeHg intakes of indigenous women of the Inuvik region in Canada starting from total mercury concentrations in hair segments. From these reconstructed MeHg intakes, the corresponding simulated mercury blood concentrations are found to be good predictors of the concentrations actually measured in blood samples. An important conclusion of this study is that, for almost all subjects, the reconstructed history of their MeHg intakes provides much lower intake values than intakes estimated from questionnaires on food consumption and estimated MeHg levels in these foods; the mean value of the reconstructed MeHg intakes is 0.03 microg/kg/day compared with the mean value of 0.20 microg/kg/day obtained from questionnaires. The model was also used to back-calculate the MeHg intakes from concentrations in hair strands collected from aboriginals of the Amazon region in Brazil, a population significantly more exposed than the population of the Inuvik region.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.jes.7500433", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036306", 
        "issn": [
          "1559-0631", 
          "1559-064X"
        ], 
        "name": "Journal of Exposure Science & Environmental Epidemiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Reconstruction of methylmercury intakes in indigenous populations from biomarker data.", 
    "pagination": "19-29", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16007116"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101262796"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.jes.7500433"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1056648527"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.jes.7500433", 
      "https://app.dimensions.ai/details/publication/pub.1056648527"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70056_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/doifinder/10.1038/sj.jes.7500433"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.jes.7500433'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.jes.7500433'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.jes.7500433'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.jes.7500433'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      75 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.jes.7500433 schema:about N0da0991ef03d41b1b7ddf69b19232fdb
2 N191c7e587b5b4a24baf63dbfb2da239f
3 N20b65df47c3d411496dbce874be3dfb5
4 N25a036ff3f3b4cc7ac5909e40b5f45fc
5 N3fdabee0ac0347058cd50303d00bcd58
6 N4d0b30923f9a4e8db310e230bb2b90ba
7 N5de050d4277643ed892795431a9ee1b6
8 N69b6aebc164348f1abe0902f178adb95
9 N6ce2af921fff4ad2937159620862deac
10 N7cffc72a68824f3295c5556370247963
11 N8356af6a00da4eec9f241e3e07f2806c
12 N8d685700001a452bb8e8b95cdb1c4d73
13 N93f1e754914d4b64a26f49e7c60829dd
14 N9ee4e316fede4758a16fd11d1773cb0d
15 Na9a0be9d612c4e9abd5a5dcd9b59fa00
16 Nd66ba763d0834dbca2aeb7fb9f17c388
17 Nd7eb66dd1b8f44c78df948331db13993
18 Nd9f208ab70de437dbf936af1b935dec6
19 Ne9eb84a55fd04709870c9db224b4b5c3
20 Nee0bdc0d8e034477b54369f04cb7a538
21 Nf2bff732987c4be496dc0e1782b9b532
22 anzsrc-for:11
23 anzsrc-for:1117
24 schema:author Nf71b723b8045441283ca8f14fa1c0c01
25 schema:citation sg:pub.10.1023/a:1007017116171
26 sg:pub.10.1023/a:1018378207932
27 https://app.dimensions.ai/details/publication/pub.1080740759
28 https://app.dimensions.ai/details/publication/pub.1082954144
29 https://app.dimensions.ai/details/publication/pub.1082954154
30 https://app.dimensions.ai/details/publication/pub.1083063064
31 https://doi.org/10.1002/ana.410070412
32 https://doi.org/10.1006/enrs.1998.3846
33 https://doi.org/10.1006/rtph.1997.1105
34 https://doi.org/10.1006/taap.1994.1204
35 https://doi.org/10.1006/taap.2000.9113
36 https://doi.org/10.1016/s0048-9697(00)00835-4
37 https://doi.org/10.1080/00039890109604467
38 https://doi.org/10.1080/00039896.1969.10666872
39 https://doi.org/10.1080/00039896.1972.10666141
40 https://doi.org/10.1080/00039896.1974.10666505
41 https://doi.org/10.1080/00039896.1980.10667458
42 https://doi.org/10.1080/00039896.1980.10667486
43 https://doi.org/10.1080/00039896.1982.10667578
44 https://doi.org/10.1093/oxfordjournals.aje.a113651
45 https://doi.org/10.1126/science.181.4096.230
46 https://doi.org/10.1177/074823379701300401
47 https://doi.org/10.1177/096032718400300205
48 https://doi.org/10.1177/096032718800700204
49 https://doi.org/10.1289/ehp.011091291
50 https://doi.org/10.3109/00099308109035071
51 schema:datePublished 2006-01
52 schema:datePublishedReg 2006-01-01
53 schema:description Significant amounts of methylmercury (MeHg) can bioaccumulate in fish and sea mammals. To monitor MeHg exposure in individuals, organic and inorganic mercury are often measured in blood samples or in hair strands, the latter being by far the best integrator of past exposure. With knowledge of the MeHg kinetics in humans, the levels of both biomarkers can be related to MeHg body burden and intakes. In the present study, we use the toxicokinetic model of Carrier et al. (2001) describing the distribution and excretion of MeHg in humans, to reconstruct the history of MeHg intakes of indigenous women of the Inuvik region in Canada starting from total mercury concentrations in hair segments. From these reconstructed MeHg intakes, the corresponding simulated mercury blood concentrations are found to be good predictors of the concentrations actually measured in blood samples. An important conclusion of this study is that, for almost all subjects, the reconstructed history of their MeHg intakes provides much lower intake values than intakes estimated from questionnaires on food consumption and estimated MeHg levels in these foods; the mean value of the reconstructed MeHg intakes is 0.03 microg/kg/day compared with the mean value of 0.20 microg/kg/day obtained from questionnaires. The model was also used to back-calculate the MeHg intakes from concentrations in hair strands collected from aboriginals of the Amazon region in Brazil, a population significantly more exposed than the population of the Inuvik region.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N3059ce013cdd4ab7bb76bb2a63523054
58 Naebb5f9bf312406bb60df1b92c09cbf4
59 sg:journal.1036306
60 schema:name Reconstruction of methylmercury intakes in indigenous populations from biomarker data.
61 schema:pagination 19-29
62 schema:productId N572d2a156b3a43b88b1f5d55c6bfe5b7
63 N72b5ae147b514f258d7bae9d7fdce1e6
64 Na06cdb95d67d42a9b77ec2e603cdc06f
65 Ndc6d0b08a89c4c20981afe8fa8f6b175
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056648527
67 https://doi.org/10.1038/sj.jes.7500433
68 schema:sdDatePublished 2019-04-11T12:41
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N6bbd54f01172479cb02aa01017ee87f0
71 schema:url http://www.nature.com/doifinder/10.1038/sj.jes.7500433
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0da0991ef03d41b1b7ddf69b19232fdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Male
77 rdf:type schema:DefinedTerm
78 N191c7e587b5b4a24baf63dbfb2da239f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Models, Theoretical
80 rdf:type schema:DefinedTerm
81 N1f930918560049dbaf73e3cfb45f487e rdf:first sg:person.01133161060.06
82 rdf:rest Nd39ed8f1d2ce4c68aa6d2392ec488b0f
83 N20b65df47c3d411496dbce874be3dfb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Middle Aged
85 rdf:type schema:DefinedTerm
86 N25a036ff3f3b4cc7ac5909e40b5f45fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Adolescent
88 rdf:type schema:DefinedTerm
89 N3059ce013cdd4ab7bb76bb2a63523054 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N3fdabee0ac0347058cd50303d00bcd58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Biomarkers
93 rdf:type schema:DefinedTerm
94 N49eab4278c924a4bb13275ee5de93705 rdf:first sg:person.01361041234.34
95 rdf:rest rdf:nil
96 N4d0b30923f9a4e8db310e230bb2b90ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Reference Values
98 rdf:type schema:DefinedTerm
99 N56f8db53855848ff96b961c466f2b160 rdf:first sg:person.01272624033.75
100 rdf:rest N49eab4278c924a4bb13275ee5de93705
101 N572d2a156b3a43b88b1f5d55c6bfe5b7 schema:name doi
102 schema:value 10.1038/sj.jes.7500433
103 rdf:type schema:PropertyValue
104 N5de050d4277643ed892795431a9ee1b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Retrospective Studies
106 rdf:type schema:DefinedTerm
107 N69b6aebc164348f1abe0902f178adb95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Female
109 rdf:type schema:DefinedTerm
110 N6bbd54f01172479cb02aa01017ee87f0 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N6ce2af921fff4ad2937159620862deac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Environmental Pollutants
114 rdf:type schema:DefinedTerm
115 N72b5ae147b514f258d7bae9d7fdce1e6 schema:name pubmed_id
116 schema:value 16007116
117 rdf:type schema:PropertyValue
118 N7cffc72a68824f3295c5556370247963 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Pregnancy
120 rdf:type schema:DefinedTerm
121 N8356af6a00da4eec9f241e3e07f2806c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Body Burden
123 rdf:type schema:DefinedTerm
124 N8d685700001a452bb8e8b95cdb1c4d73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Food Contamination
126 rdf:type schema:DefinedTerm
127 N93f1e754914d4b64a26f49e7c60829dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Mercury
129 rdf:type schema:DefinedTerm
130 N9ee4e316fede4758a16fd11d1773cb0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Hair
132 rdf:type schema:DefinedTerm
133 Na06cdb95d67d42a9b77ec2e603cdc06f schema:name dimensions_id
134 schema:value pub.1056648527
135 rdf:type schema:PropertyValue
136 Na9a0be9d612c4e9abd5a5dcd9b59fa00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Methylmercury Compounds
138 rdf:type schema:DefinedTerm
139 Naebb5f9bf312406bb60df1b92c09cbf4 schema:volumeNumber 16
140 rdf:type schema:PublicationVolume
141 Nd39ed8f1d2ce4c68aa6d2392ec488b0f rdf:first sg:person.01116271136.60
142 rdf:rest N56f8db53855848ff96b961c466f2b160
143 Nd66ba763d0834dbca2aeb7fb9f17c388 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Humans
145 rdf:type schema:DefinedTerm
146 Nd7eb66dd1b8f44c78df948331db13993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Diet
148 rdf:type schema:DefinedTerm
149 Nd9f208ab70de437dbf936af1b935dec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Brazil
151 rdf:type schema:DefinedTerm
152 Ndc6d0b08a89c4c20981afe8fa8f6b175 schema:name nlm_unique_id
153 schema:value 101262796
154 rdf:type schema:PropertyValue
155 Ne9eb84a55fd04709870c9db224b4b5c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Adult
157 rdf:type schema:DefinedTerm
158 Nee0bdc0d8e034477b54369f04cb7a538 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Seafood
160 rdf:type schema:DefinedTerm
161 Nf2bff732987c4be496dc0e1782b9b532 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Canada
163 rdf:type schema:DefinedTerm
164 Nf71b723b8045441283ca8f14fa1c0c01 rdf:first sg:person.016030230764.06
165 rdf:rest N1f930918560049dbaf73e3cfb45f487e
166 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
167 schema:name Medical and Health Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
170 schema:name Public Health and Health Services
171 rdf:type schema:DefinedTerm
172 sg:journal.1036306 schema:issn 1559-0631
173 1559-064X
174 schema:name Journal of Exposure Science & Environmental Epidemiology
175 rdf:type schema:Periodical
176 sg:person.01116271136.60 schema:familyName Carrier
177 schema:givenName Gaétan
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116271136.60
179 rdf:type schema:Person
180 sg:person.01133161060.06 schema:familyName Brunet
181 schema:givenName Robert C
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133161060.06
183 rdf:type schema:Person
184 sg:person.01272624033.75 schema:familyName Bouchard
185 schema:givenName Michèle
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272624033.75
187 rdf:type schema:Person
188 sg:person.01361041234.34 schema:familyName Feeley
189 schema:givenName Mark
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361041234.34
191 rdf:type schema:Person
192 sg:person.016030230764.06 schema:affiliation https://www.grid.ac/institutes/grid.14848.31
193 schema:familyName Gosselin
194 schema:givenName Nathalie H
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016030230764.06
196 rdf:type schema:Person
197 sg:pub.10.1023/a:1007017116171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022121035
198 https://doi.org/10.1023/a:1007017116171
199 rdf:type schema:CreativeWork
200 sg:pub.10.1023/a:1018378207932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012385918
201 https://doi.org/10.1023/a:1018378207932
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1080740759 schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1082954144 schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1082954154 schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1083063064 schema:CreativeWork
207 https://doi.org/10.1002/ana.410070412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040030681
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1006/enrs.1998.3846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032930684
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1006/rtph.1997.1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039469956
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1006/taap.1994.1204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022256858
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1006/taap.2000.9113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017294435
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0048-9697(00)00835-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034662261
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1080/00039890109604467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011358675
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1080/00039896.1969.10666872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025774491
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1080/00039896.1972.10666141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006580786
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1080/00039896.1974.10666505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043097905
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1080/00039896.1980.10667458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044076312
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1080/00039896.1980.10667486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015016583
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1080/00039896.1982.10667578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001764188
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/oxfordjournals.aje.a113651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081873647
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.181.4096.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062507832
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1177/074823379701300401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043959433
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1177/096032718400300205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063900656
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1177/096032718800700204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063901130
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1289/ehp.011091291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737287
244 rdf:type schema:CreativeWork
245 https://doi.org/10.3109/00099308109035071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049973787
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.14848.31 schema:alternateName University of Montreal
248 schema:name Chaire en analyse des risques toxicologiques pour la santé humaine and Département de santé environnementale et santé au travail, Faculté de Médecine, Université de Montréal, PO Box 6128, Main Station, Montreal, Quebec, Canada.
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...