Do associations between airborne particles and daily mortality in Mexico City differ by measurement method, region, or modeling strategy? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-11

AUTHORS

Marie S O'Neill, Dana Loomis, Victor H Borja Aburto, Diane Gold, Irva Hertz-Picciotto, Margarita Castillejos

ABSTRACT

We evaluated whether associations between PM10 and daily mortality in Mexico City differ by the PM10 measurement device or by regional differences in particle composition. Additionally, we reanalyzed previously collected data in light of recent insights about flaws in commonly used time series analysis techniques. We examined daily associations between mortality and four indicators of ambient PM10 using Poisson regression, controlling for temperature and time trends with cubic natural splines. Associations were calculated for five subregions corresponding to five monitoring sites and pooled for the entire metropolitan area. PM10 was measured with three methods: Tapered Element Oscillating Microbalance (TEOM), Sierra-Anderson High Volume (Hi-Vol) and Harvard Impactor (HI), the latter only at one site. In addition, predicted values of daily PM10 were developed using the Hi-Vol measurements, which were taken every sixth day, and weather, visibility and other pollutant data. We assigned deaths to the exposure from the monitor nearest to their residence. We also re-evaluated the HI PM2.5 and mortality association in southwest Mexico City, which was estimated previously using nonparametric statistical models. Slight decreases in effect estimates were observed (a 1.45% increase (95% CI: 0.09%, 2.83%) in total mortality per 10 microg/m(3) increment of PM2.5 at lag 0) compared to a 1.68% change (95% CI: 0.45%, 2.93%) using the previously employed nonparametric approach. Using data pooled over all the regions, PM10 measured by the TEOM and the predicted PM10 values showed little association with mortality at any of the lags examined. The pooled estimates for Hi-Vol PM10 (using one sixth of the data) were positive across all lags examined and significant for lags 3 and 5. No consistent patterns of differing associations were seen across regions that would correspond with particle toxicity or composition. Particulate air pollution, measured with gravimetric methods, is associated with daily mortality and presents a risk to health in Mexico City. The reanalysis suggests that previous research is robust to statistical method and likely to yield the same overall conclusions about the short-term effects of airborne particles on mortality. More... »

PAGES

7500341

References to SciGraph publications

  • 1989. Generalized Linear Models in NONE
  • 2002-04. Estimating particle exposure in the Mexico City metropolitan area in JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY
  • 2002. Air Quality in the Mexico Megacity, An Integrated Assessment in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/sj.jea.7500341

    DOI

    http://dx.doi.org/10.1038/sj.jea.7500341

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038773175

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15026773


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Air Pollutants", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mexico", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mortality", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Particle Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Assessment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Urban Population", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of North Carolina System", 
              "id": "https://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "University of North Carolina (UNC) at Chapel Hill, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O'Neill", 
            "givenName": "Marie S", 
            "id": "sg:person.01355774672.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355774672.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of North Carolina System", 
              "id": "https://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "University of North Carolina (UNC) at Chapel Hill, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loomis", 
            "givenName": "Dana", 
            "id": "sg:person.01233111051.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233111051.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Secretaria de Salud", 
              "id": "https://www.grid.ac/institutes/grid.415745.6", 
              "name": [
                "Secretar\u00eda de Salud, Direcci\u00f3n de Salud Ambiental, M\u00e9xico, D.F., M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aburto", 
            "givenName": "Victor H Borja", 
            "id": "sg:person.013110241351.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013110241351.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brigham and Women's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.62560.37", 
              "name": [
                "Channing Laboratory, Brigham and Women's Hospital; Harvard Medical School/Harvard School of Public Health, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gold", 
            "givenName": "Diane", 
            "id": "sg:person.015006501037.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006501037.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Davis", 
              "id": "https://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Department of Epidemiology and Preventive Medicine, School of Medicine, University of California at Davis, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hertz-Picciotto", 
            "givenName": "Irva", 
            "id": "sg:person.0775617774.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775617774.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad Aut\u00f3noma Metropolitana", 
              "id": "https://www.grid.ac/institutes/grid.7220.7", 
              "name": [
                "Universidad Autonoma Metropolitana, Xochimilco, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Castillejos", 
            "givenName": "Margarita", 
            "id": "sg:person.01342374654.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342374654.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1165/ajrcmb.19.4.3176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000846240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwf062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00039896.1993.9936722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006609100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm200012143432401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007534718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10473289.1997.10463923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010159757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200301000-00009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021200325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200301000-00009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021200325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(84)90282-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021560821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(84)90282-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021560821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0013-9351(02)00054-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021860216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0013-9351(02)00054-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021860216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1164/ajrccm/154.6_pt_2.s223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026100854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.aje.a009099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029053484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.pu.15.050194.000543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029945039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0048-9697(01)00982-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030319322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-199903000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031211685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-199903000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031211685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0895-8378.1987.11463182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038794583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10473289.1999.10463915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038858538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-0454-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039414104", 
              "https://doi.org/10.1007/978-94-010-0454-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-0454-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039414104", 
              "https://doi.org/10.1007/978-94-010-0454-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10473289.1991.10466903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041094186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1034/j.1399-3003.2000.016003391.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041371106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.4780140406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042476967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/enrs.1994.1005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050748206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050815190", 
              "https://doi.org/10.1038/sj.jea.7500212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050815190", 
              "https://doi.org/10.1038/sj.jea.7500212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10473289.1995.10467369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053550088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1979.10481038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058302085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/089583700196392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058346602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200211000-00024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060139592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200211000-00024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060139592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200211000-00024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060139592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200301000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060139602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200301000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060139602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200301000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060139602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.00108941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064737119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.02110715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064737698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.5181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064741527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.98106849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064747050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082951137", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082951141", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.106-1533229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083353358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109705877", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3242-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705877", 
              "https://doi.org/10.1007/978-1-4899-3242-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3242-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705877", 
              "https://doi.org/10.1007/978-1-4899-3242-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-11", 
        "datePublishedReg": "2004-11-01", 
        "description": "We evaluated whether associations between PM10 and daily mortality in Mexico City differ by the PM10 measurement device or by regional differences in particle composition. Additionally, we reanalyzed previously collected data in light of recent insights about flaws in commonly used time series analysis techniques. We examined daily associations between mortality and four indicators of ambient PM10 using Poisson regression, controlling for temperature and time trends with cubic natural splines. Associations were calculated for five subregions corresponding to five monitoring sites and pooled for the entire metropolitan area. PM10 was measured with three methods: Tapered Element Oscillating Microbalance (TEOM), Sierra-Anderson High Volume (Hi-Vol) and Harvard Impactor (HI), the latter only at one site. In addition, predicted values of daily PM10 were developed using the Hi-Vol measurements, which were taken every sixth day, and weather, visibility and other pollutant data. We assigned deaths to the exposure from the monitor nearest to their residence. We also re-evaluated the HI PM2.5 and mortality association in southwest Mexico City, which was estimated previously using nonparametric statistical models. Slight decreases in effect estimates were observed (a 1.45% increase (95% CI: 0.09%, 2.83%) in total mortality per 10 microg/m(3) increment of PM2.5 at lag 0) compared to a 1.68% change (95% CI: 0.45%, 2.93%) using the previously employed nonparametric approach. Using data pooled over all the regions, PM10 measured by the TEOM and the predicted PM10 values showed little association with mortality at any of the lags examined. The pooled estimates for Hi-Vol PM10 (using one sixth of the data) were positive across all lags examined and significant for lags 3 and 5. No consistent patterns of differing associations were seen across regions that would correspond with particle toxicity or composition. Particulate air pollution, measured with gravimetric methods, is associated with daily mortality and presents a risk to health in Mexico City. The reanalysis suggests that previous research is robust to statistical method and likely to yield the same overall conclusions about the short-term effects of airborne particles on mortality.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/sj.jea.7500341", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4595015", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439076", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2683499", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1036306", 
            "issn": [
              "1559-0631", 
              "1559-064X"
            ], 
            "name": "Journal of Exposure Science & Environmental Epidemiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Do associations between airborne particles and daily mortality in Mexico City differ by measurement method, region, or modeling strategy?", 
        "pagination": "7500341", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b8b2eeaeff6a6cabb4dad3736b02ddd40de23d503bb1d5f1d03340d7306e692b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15026773"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9111438"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/sj.jea.7500341"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038773175"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/sj.jea.7500341", 
          "https://app.dimensions.ai/details/publication/pub.1038773175"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/7500341"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.jea.7500341'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.jea.7500341'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.jea.7500341'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.jea.7500341'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      21 PREDICATES      74 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/sj.jea.7500341 schema:about N22244fe412534c38ad7a53ebf126125e
    2 N239937947a934f61800b182fe3743cfb
    3 N2f6edd51877442f1bb0dc16e1f53f0a7
    4 N3c37c7d56d224bc280f4cca71e903878
    5 N42d6c922af9842d18a77ca6f277e6093
    6 N974c6c4a0cc64c99ad8946af52abd1ae
    7 Nb2b4e1c745774a96bc1480aace646097
    8 Nca28885eed274fd783b59aa39d7d8f7b
    9 Ncae685c6dac64441a43ec05e8cce4317
    10 Nf0d2fbf7f3294290b500ad4cfdbf0acc
    11 anzsrc-for:01
    12 anzsrc-for:0104
    13 schema:author Nf8ce0ec7c48e40cf8d6d68c8df94f8ce
    14 schema:citation sg:pub.10.1007/978-1-4899-3242-6
    15 sg:pub.10.1007/978-94-010-0454-1
    16 sg:pub.10.1038/sj.jea.7500212
    17 https://app.dimensions.ai/details/publication/pub.1082951137
    18 https://app.dimensions.ai/details/publication/pub.1082951141
    19 https://app.dimensions.ai/details/publication/pub.1109705877
    20 https://doi.org/10.1002/sim.4780140406
    21 https://doi.org/10.1006/enrs.1994.1005
    22 https://doi.org/10.1016/0377-2217(84)90282-0
    23 https://doi.org/10.1016/s0013-9351(02)00054-3
    24 https://doi.org/10.1016/s0048-9697(01)00982-2
    25 https://doi.org/10.1034/j.1399-3003.2000.016003391.x
    26 https://doi.org/10.1056/nejm200012143432401
    27 https://doi.org/10.1080/00039896.1993.9936722
    28 https://doi.org/10.1080/01621459.1979.10481038
    29 https://doi.org/10.1080/0895-8378.1987.11463182
    30 https://doi.org/10.1080/089583700196392
    31 https://doi.org/10.1080/10473289.1991.10466903
    32 https://doi.org/10.1080/10473289.1995.10467369
    33 https://doi.org/10.1080/10473289.1997.10463923
    34 https://doi.org/10.1080/10473289.1999.10463915
    35 https://doi.org/10.1093/aje/kwf062
    36 https://doi.org/10.1093/oxfordjournals.aje.a009099
    37 https://doi.org/10.1097/00001648-199903000-00006
    38 https://doi.org/10.1097/00001648-200211000-00024
    39 https://doi.org/10.1097/00001648-200301000-00006
    40 https://doi.org/10.1097/00001648-200301000-00009
    41 https://doi.org/10.1146/annurev.pu.15.050194.000543
    42 https://doi.org/10.1164/ajrccm/154.6_pt_2.s223
    43 https://doi.org/10.1165/ajrcmb.19.4.3176
    44 https://doi.org/10.1289/ehp.00108941
    45 https://doi.org/10.1289/ehp.02110715
    46 https://doi.org/10.1289/ehp.106-1533229
    47 https://doi.org/10.1289/ehp.5181
    48 https://doi.org/10.1289/ehp.98106849
    49 schema:datePublished 2004-11
    50 schema:datePublishedReg 2004-11-01
    51 schema:description We evaluated whether associations between PM10 and daily mortality in Mexico City differ by the PM10 measurement device or by regional differences in particle composition. Additionally, we reanalyzed previously collected data in light of recent insights about flaws in commonly used time series analysis techniques. We examined daily associations between mortality and four indicators of ambient PM10 using Poisson regression, controlling for temperature and time trends with cubic natural splines. Associations were calculated for five subregions corresponding to five monitoring sites and pooled for the entire metropolitan area. PM10 was measured with three methods: Tapered Element Oscillating Microbalance (TEOM), Sierra-Anderson High Volume (Hi-Vol) and Harvard Impactor (HI), the latter only at one site. In addition, predicted values of daily PM10 were developed using the Hi-Vol measurements, which were taken every sixth day, and weather, visibility and other pollutant data. We assigned deaths to the exposure from the monitor nearest to their residence. We also re-evaluated the HI PM2.5 and mortality association in southwest Mexico City, which was estimated previously using nonparametric statistical models. Slight decreases in effect estimates were observed (a 1.45% increase (95% CI: 0.09%, 2.83%) in total mortality per 10 microg/m(3) increment of PM2.5 at lag 0) compared to a 1.68% change (95% CI: 0.45%, 2.93%) using the previously employed nonparametric approach. Using data pooled over all the regions, PM10 measured by the TEOM and the predicted PM10 values showed little association with mortality at any of the lags examined. The pooled estimates for Hi-Vol PM10 (using one sixth of the data) were positive across all lags examined and significant for lags 3 and 5. No consistent patterns of differing associations were seen across regions that would correspond with particle toxicity or composition. Particulate air pollution, measured with gravimetric methods, is associated with daily mortality and presents a risk to health in Mexico City. The reanalysis suggests that previous research is robust to statistical method and likely to yield the same overall conclusions about the short-term effects of airborne particles on mortality.
    52 schema:genre research_article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree true
    55 schema:isPartOf N8c017808752049b5a3a8aadf76631e10
    56 Nb9c6a1b4e4df4f08a7759a7837d7943e
    57 sg:journal.1036306
    58 schema:name Do associations between airborne particles and daily mortality in Mexico City differ by measurement method, region, or modeling strategy?
    59 schema:pagination 7500341
    60 schema:productId N474876491fad409cbbc986392047052f
    61 N49a7d6bd9e4741d6bec2fe28319d5d0e
    62 N8f070ec9329943b5b72a9a5fa7dafc92
    63 Na9b8d9e52f304170a724db28d9c62c0d
    64 Nedaf5d2ba0614b93a35ccf4df2df925e
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038773175
    66 https://doi.org/10.1038/sj.jea.7500341
    67 schema:sdDatePublished 2019-04-11T12:27
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher Nf00f19e1cecc48709abd0470929df629
    70 schema:url http://www.nature.com/articles/7500341
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N22244fe412534c38ad7a53ebf126125e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Air Pollutants
    76 rdf:type schema:DefinedTerm
    77 N239937947a934f61800b182fe3743cfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Risk Assessment
    79 rdf:type schema:DefinedTerm
    80 N2f6edd51877442f1bb0dc16e1f53f0a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Time Factors
    82 rdf:type schema:DefinedTerm
    83 N3c37c7d56d224bc280f4cca71e903878 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Reproducibility of Results
    85 rdf:type schema:DefinedTerm
    86 N3fd1e719bd9c44148943ed4161565f5e rdf:first sg:person.01342374654.46
    87 rdf:rest rdf:nil
    88 N42d6c922af9842d18a77ca6f277e6093 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Retrospective Studies
    90 rdf:type schema:DefinedTerm
    91 N474876491fad409cbbc986392047052f schema:name readcube_id
    92 schema:value b8b2eeaeff6a6cabb4dad3736b02ddd40de23d503bb1d5f1d03340d7306e692b
    93 rdf:type schema:PropertyValue
    94 N492f7dd8695b44acae9cc1884d8e3c0e rdf:first sg:person.013110241351.66
    95 rdf:rest Nc504ea829cc74b73abf281d64c1d6e0b
    96 N49a7d6bd9e4741d6bec2fe28319d5d0e schema:name doi
    97 schema:value 10.1038/sj.jea.7500341
    98 rdf:type schema:PropertyValue
    99 N8c017808752049b5a3a8aadf76631e10 schema:issueNumber 6
    100 rdf:type schema:PublicationIssue
    101 N8f070ec9329943b5b72a9a5fa7dafc92 schema:name nlm_unique_id
    102 schema:value 9111438
    103 rdf:type schema:PropertyValue
    104 N974c6c4a0cc64c99ad8946af52abd1ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Humans
    106 rdf:type schema:DefinedTerm
    107 N97acf4aa9b1f47f1bb8c2ea9b06f06a7 rdf:first sg:person.0775617774.23
    108 rdf:rest N3fd1e719bd9c44148943ed4161565f5e
    109 Na807159b7ee94505a778e7f16e54e513 rdf:first sg:person.01233111051.94
    110 rdf:rest N492f7dd8695b44acae9cc1884d8e3c0e
    111 Na9b8d9e52f304170a724db28d9c62c0d schema:name pubmed_id
    112 schema:value 15026773
    113 rdf:type schema:PropertyValue
    114 Nb2b4e1c745774a96bc1480aace646097 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Urban Population
    116 rdf:type schema:DefinedTerm
    117 Nb9c6a1b4e4df4f08a7759a7837d7943e schema:volumeNumber 14
    118 rdf:type schema:PublicationVolume
    119 Nc504ea829cc74b73abf281d64c1d6e0b rdf:first sg:person.015006501037.01
    120 rdf:rest N97acf4aa9b1f47f1bb8c2ea9b06f06a7
    121 Nca28885eed274fd783b59aa39d7d8f7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Mexico
    123 rdf:type schema:DefinedTerm
    124 Ncae685c6dac64441a43ec05e8cce4317 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Particle Size
    126 rdf:type schema:DefinedTerm
    127 Nedaf5d2ba0614b93a35ccf4df2df925e schema:name dimensions_id
    128 schema:value pub.1038773175
    129 rdf:type schema:PropertyValue
    130 Nf00f19e1cecc48709abd0470929df629 schema:name Springer Nature - SN SciGraph project
    131 rdf:type schema:Organization
    132 Nf0d2fbf7f3294290b500ad4cfdbf0acc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Mortality
    134 rdf:type schema:DefinedTerm
    135 Nf8ce0ec7c48e40cf8d6d68c8df94f8ce rdf:first sg:person.01355774672.43
    136 rdf:rest Na807159b7ee94505a778e7f16e54e513
    137 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Mathematical Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Statistics
    142 rdf:type schema:DefinedTerm
    143 sg:grant.2439076 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.jea.7500341
    144 rdf:type schema:MonetaryGrant
    145 sg:grant.2683499 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.jea.7500341
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.4595015 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.jea.7500341
    148 rdf:type schema:MonetaryGrant
    149 sg:journal.1036306 schema:issn 1559-0631
    150 1559-064X
    151 schema:name Journal of Exposure Science & Environmental Epidemiology
    152 rdf:type schema:Periodical
    153 sg:person.01233111051.94 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
    154 schema:familyName Loomis
    155 schema:givenName Dana
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233111051.94
    157 rdf:type schema:Person
    158 sg:person.013110241351.66 schema:affiliation https://www.grid.ac/institutes/grid.415745.6
    159 schema:familyName Aburto
    160 schema:givenName Victor H Borja
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013110241351.66
    162 rdf:type schema:Person
    163 sg:person.01342374654.46 schema:affiliation https://www.grid.ac/institutes/grid.7220.7
    164 schema:familyName Castillejos
    165 schema:givenName Margarita
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342374654.46
    167 rdf:type schema:Person
    168 sg:person.01355774672.43 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
    169 schema:familyName O'Neill
    170 schema:givenName Marie S
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355774672.43
    172 rdf:type schema:Person
    173 sg:person.015006501037.01 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
    174 schema:familyName Gold
    175 schema:givenName Diane
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006501037.01
    177 rdf:type schema:Person
    178 sg:person.0775617774.23 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
    179 schema:familyName Hertz-Picciotto
    180 schema:givenName Irva
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775617774.23
    182 rdf:type schema:Person
    183 sg:pub.10.1007/978-1-4899-3242-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705877
    184 https://doi.org/10.1007/978-1-4899-3242-6
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/978-94-010-0454-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039414104
    187 https://doi.org/10.1007/978-94-010-0454-1
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/sj.jea.7500212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050815190
    190 https://doi.org/10.1038/sj.jea.7500212
    191 rdf:type schema:CreativeWork
    192 https://app.dimensions.ai/details/publication/pub.1082951137 schema:CreativeWork
    193 https://app.dimensions.ai/details/publication/pub.1082951141 schema:CreativeWork
    194 https://app.dimensions.ai/details/publication/pub.1109705877 schema:CreativeWork
    195 https://doi.org/10.1002/sim.4780140406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042476967
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1006/enrs.1994.1005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050748206
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/0377-2217(84)90282-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021560821
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/s0013-9351(02)00054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021860216
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/s0048-9697(01)00982-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030319322
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1034/j.1399-3003.2000.016003391.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041371106
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1056/nejm200012143432401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007534718
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1080/00039896.1993.9936722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006609100
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1080/01621459.1979.10481038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302085
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1080/0895-8378.1987.11463182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038794583
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1080/089583700196392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058346602
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1080/10473289.1991.10466903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041094186
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1080/10473289.1995.10467369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053550088
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1080/10473289.1997.10463923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010159757
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1080/10473289.1999.10463915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038858538
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1093/aje/kwf062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476152
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1093/oxfordjournals.aje.a009099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029053484
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1097/00001648-199903000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031211685
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1097/00001648-200211000-00024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060139592
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1097/00001648-200301000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060139602
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1097/00001648-200301000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021200325
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1146/annurev.pu.15.050194.000543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029945039
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1164/ajrccm/154.6_pt_2.s223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026100854
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1165/ajrcmb.19.4.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000846240
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1289/ehp.00108941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737119
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1289/ehp.02110715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737698
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1289/ehp.106-1533229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083353358
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1289/ehp.5181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064741527
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1289/ehp.98106849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064747050
    252 rdf:type schema:CreativeWork
    253 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
    254 schema:name Department of Epidemiology and Preventive Medicine, School of Medicine, University of California at Davis, USA
    255 rdf:type schema:Organization
    256 https://www.grid.ac/institutes/grid.410711.2 schema:alternateName University of North Carolina System
    257 schema:name University of North Carolina (UNC) at Chapel Hill, USA
    258 rdf:type schema:Organization
    259 https://www.grid.ac/institutes/grid.415745.6 schema:alternateName Secretaria de Salud
    260 schema:name Secretaría de Salud, Dirección de Salud Ambiental, México, D.F., México
    261 rdf:type schema:Organization
    262 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
    263 schema:name Channing Laboratory, Brigham and Women's Hospital; Harvard Medical School/Harvard School of Public Health, Boston, MA, USA
    264 rdf:type schema:Organization
    265 https://www.grid.ac/institutes/grid.7220.7 schema:alternateName Universidad Autónoma Metropolitana
    266 schema:name Universidad Autonoma Metropolitana, Xochimilco, México
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...