Two dimensions of measurement error: Classical and Berkson error in residential radon exposure assessment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-09

AUTHORS

I M Heid, H Küchenhoff, J Miles, L Kreienbrock, H E Wichmann

ABSTRACT

Measurement error in exposure assessment is unavoidable. Statistical methods to correct for such errors rely upon a valid error model, particularly regarding the classification of classical and Berkson error, the structure and the size of the error. We provide a detailed list of sources of error in residential radon exposure assessment, stressing the importance of (a) the differentiation between classical and Berkson error and (b) the clear definitions of predictors and operationally defined predictors using the example of two German case-control studies on lung cancer and residential radon exposure. We give intuitive measures of error size and present evidence on both the error size and the multiplicative structure of the error from three data sets with repeated measurements of radon concentration. We conclude that modern exposure assessment should not only aim to be as accurate and precise as possible, but should also provide a model of the remaining measurement errors with clear differentiation of classical and Berkson components. More... »

PAGES

7500332

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.jea.7500332

DOI

http://dx.doi.org/10.1038/sj.jea.7500332

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025221636

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15361895


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Exposure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Housing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "GSF-National Research Center for Environment and Health, Insitute of Epidemiology, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heid", 
        "givenName": "I M", 
        "id": "sg:person.01366154613.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366154613.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, Ludwig-Maximilians-Universtit\u00e4t M\u00fcnchen, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00fcchenhoff", 
        "givenName": "H", 
        "id": "sg:person.01227642637.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227642637.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Radiation Protection Board, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miles", 
        "givenName": "J", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Veterinary Medicine Hanover", 
          "id": "https://www.grid.ac/institutes/grid.412970.9", 
          "name": [
            "Institute for Biometry, Epidemiology and Information Processing, Hanover School of Veterinary Medicine, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreienbrock", 
        "givenName": "L", 
        "id": "sg:person.0643037364.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643037364.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "GSF-National Research Center for Environment and Health, Insitute of Epidemiology, Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wichmann", 
        "givenName": "H E", 
        "id": "sg:person.01141622516.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141622516.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/sim.4780080914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000557968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-199702000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006852488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-199702000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006852488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-199702000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006852488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780080413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007861315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/30.3.421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010740171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199401203300302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012590744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1998.506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019904661", 
          "https://doi.org/10.1038/bjc.1998.506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1998.506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019904661", 
          "https://doi.org/10.1038/bjc.1998.506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19981015)17:19<2157::aid-sim916>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020187095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025320064", 
          "https://doi.org/10.1038/sj.jea.7500236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025320064", 
          "https://doi.org/10.1038/sj.jea.7500236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-196412000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026384027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-196412000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026384027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780080905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032437929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780080905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032437929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/153.1.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032850014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-199301000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035843866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-199301000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035843866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-200003000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038649703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-200003000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038649703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2002.00013.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039756860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000071410.26053.c4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039915574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000071410.26053.c4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039915574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042902070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-199905000-00015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043368448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-199905000-00015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043368448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2001.00689.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046779320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/71.1.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.rpd.a031832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059965092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.00108419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064737032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3578953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070381414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a115761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078564699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rpd/45.1-4.651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083500985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.rpd.a080978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083632311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705918", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4477-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705918", 
          "https://doi.org/10.1007/978-1-4899-4477-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4477-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705918", 
          "https://doi.org/10.1007/978-1-4899-4477-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-09", 
    "datePublishedReg": "2004-09-01", 
    "description": "Measurement error in exposure assessment is unavoidable. Statistical methods to correct for such errors rely upon a valid error model, particularly regarding the classification of classical and Berkson error, the structure and the size of the error. We provide a detailed list of sources of error in residential radon exposure assessment, stressing the importance of (a) the differentiation between classical and Berkson error and (b) the clear definitions of predictors and operationally defined predictors using the example of two German case-control studies on lung cancer and residential radon exposure. We give intuitive measures of error size and present evidence on both the error size and the multiplicative structure of the error from three data sets with repeated measurements of radon concentration. We conclude that modern exposure assessment should not only aim to be as accurate and precise as possible, but should also provide a model of the remaining measurement errors with clear differentiation of classical and Berkson components.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.jea.7500332", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036306", 
        "issn": [
          "1559-0631", 
          "1559-064X"
        ], 
        "name": "Journal of Exposure Science & Environmental Epidemiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Two dimensions of measurement error: Classical and Berkson error in residential radon exposure assessment", 
    "pagination": "7500332", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7827eae18f51ba36ba9042ab5db06bd77123a6737502fcfaeab0231dcce20418"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15361895"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9111438"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.jea.7500332"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025221636"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.jea.7500332", 
      "https://app.dimensions.ai/details/publication/pub.1025221636"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/7500332"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.jea.7500332'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.jea.7500332'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.jea.7500332'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.jea.7500332'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      64 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.jea.7500332 schema:about N04598e89631146eba72ab31b982bea99
2 N1ec737ab507c42ba858266bc470cec4b
3 N21c336fe0b074220ba5a04efb38c4b14
4 N3168e2d1272747c2b3a711663e7bcef1
5 N34c64842eaa44bc8b87d33c74ce93b38
6 N44173cbcf17442649baa15ecd5b575fd
7 N4ec5a7fb4704462386ee14d2f12d8f31
8 N8c9a4f8b7d08442ca8ffbaad6b55ff20
9 anzsrc-for:01
10 anzsrc-for:0104
11 schema:author N0e0a30a982bc423985c819a6991a8245
12 schema:citation sg:pub.10.1007/978-1-4899-4477-1
13 sg:pub.10.1038/bjc.1998.506
14 sg:pub.10.1038/sj.jea.7500236
15 https://app.dimensions.ai/details/publication/pub.1109705918
16 https://doi.org/10.1002/(sici)1097-0258(19981015)17:19<2157::aid-sim916>3.0.co;2-f
17 https://doi.org/10.1002/sim.1252
18 https://doi.org/10.1002/sim.4780080413
19 https://doi.org/10.1002/sim.4780080905
20 https://doi.org/10.1002/sim.4780080914
21 https://doi.org/10.1056/nejm199401203300302
22 https://doi.org/10.1093/aje/153.1.42
23 https://doi.org/10.1093/biomet/71.1.19
24 https://doi.org/10.1093/ije/30.3.421
25 https://doi.org/10.1093/oxfordjournals.aje.a115761
26 https://doi.org/10.1093/oxfordjournals.rpd.a031832
27 https://doi.org/10.1093/oxfordjournals.rpd.a080978
28 https://doi.org/10.1093/rpd/45.1-4.651
29 https://doi.org/10.1097/00004032-196412000-00036
30 https://doi.org/10.1097/00004032-199301000-00001
31 https://doi.org/10.1097/00004032-199702000-00010
32 https://doi.org/10.1097/00004032-199905000-00015
33 https://doi.org/10.1097/00004032-200003000-00004
34 https://doi.org/10.1097/01.ede.0000071410.26053.c4
35 https://doi.org/10.1111/j.0006-341x.2001.00689.x
36 https://doi.org/10.1111/j.0006-341x.2002.00013.x
37 https://doi.org/10.1289/ehp.00108419
38 https://doi.org/10.2307/3578953
39 schema:datePublished 2004-09
40 schema:datePublishedReg 2004-09-01
41 schema:description Measurement error in exposure assessment is unavoidable. Statistical methods to correct for such errors rely upon a valid error model, particularly regarding the classification of classical and Berkson error, the structure and the size of the error. We provide a detailed list of sources of error in residential radon exposure assessment, stressing the importance of (a) the differentiation between classical and Berkson error and (b) the clear definitions of predictors and operationally defined predictors using the example of two German case-control studies on lung cancer and residential radon exposure. We give intuitive measures of error size and present evidence on both the error size and the multiplicative structure of the error from three data sets with repeated measurements of radon concentration. We conclude that modern exposure assessment should not only aim to be as accurate and precise as possible, but should also provide a model of the remaining measurement errors with clear differentiation of classical and Berkson components.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N46f883282ee54dbe80d1c229541d68e6
46 N5911391d91a44ec799a947fe935454ef
47 sg:journal.1036306
48 schema:name Two dimensions of measurement error: Classical and Berkson error in residential radon exposure assessment
49 schema:pagination 7500332
50 schema:productId N087e04674d0a4f549d0197b98abe9973
51 N262aa33851f54535b45ca07f281deea8
52 N364d9688869441dbb1314b75ec053918
53 N4578cd5f88e9464c8460b3b0e29d2c2e
54 N9f058826ec314bc4990784a4e0e192a4
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025221636
56 https://doi.org/10.1038/sj.jea.7500332
57 schema:sdDatePublished 2019-04-11T12:26
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ncc959691d69643a4bdec41f0f8ef3579
60 schema:url http://www.nature.com/articles/7500332
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N04598e89631146eba72ab31b982bea99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Case-Control Studies
66 rdf:type schema:DefinedTerm
67 N087e04674d0a4f549d0197b98abe9973 schema:name pubmed_id
68 schema:value 15361895
69 rdf:type schema:PropertyValue
70 N0e0a30a982bc423985c819a6991a8245 rdf:first sg:person.01366154613.34
71 rdf:rest Nc257bef56d574322a8bd590c5a4a0a43
72 N1ec737ab507c42ba858266bc470cec4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Radon
74 rdf:type schema:DefinedTerm
75 N21c336fe0b074220ba5a04efb38c4b14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Housing
77 rdf:type schema:DefinedTerm
78 N262aa33851f54535b45ca07f281deea8 schema:name nlm_unique_id
79 schema:value 9111438
80 rdf:type schema:PropertyValue
81 N3168e2d1272747c2b3a711663e7bcef1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Environmental Exposure
83 rdf:type schema:DefinedTerm
84 N34c64842eaa44bc8b87d33c74ce93b38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Reproducibility of Results
86 rdf:type schema:DefinedTerm
87 N364d9688869441dbb1314b75ec053918 schema:name dimensions_id
88 schema:value pub.1025221636
89 rdf:type schema:PropertyValue
90 N44173cbcf17442649baa15ecd5b575fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Bias
92 rdf:type schema:DefinedTerm
93 N4578cd5f88e9464c8460b3b0e29d2c2e schema:name readcube_id
94 schema:value 7827eae18f51ba36ba9042ab5db06bd77123a6737502fcfaeab0231dcce20418
95 rdf:type schema:PropertyValue
96 N46f883282ee54dbe80d1c229541d68e6 schema:volumeNumber 14
97 rdf:type schema:PublicationVolume
98 N4ec5a7fb4704462386ee14d2f12d8f31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Risk Assessment
100 rdf:type schema:DefinedTerm
101 N4f7e88bc9c714628bc8f219b489a4ccd schema:name National Radiation Protection Board, Oxford, UK
102 rdf:type schema:Organization
103 N5911391d91a44ec799a947fe935454ef schema:issueNumber 5
104 rdf:type schema:PublicationIssue
105 N7820337db4cf4885918df4bf29c9c8ae rdf:first Nc4aadd92b3694ad492fbe459e64ed032
106 rdf:rest Nb226e09fe6884174b9feee063dbd1a29
107 N8c9a4f8b7d08442ca8ffbaad6b55ff20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 N93de6228e66d4482b9a4b1d01f89fd79 rdf:first sg:person.01141622516.63
111 rdf:rest rdf:nil
112 N9f058826ec314bc4990784a4e0e192a4 schema:name doi
113 schema:value 10.1038/sj.jea.7500332
114 rdf:type schema:PropertyValue
115 Nb226e09fe6884174b9feee063dbd1a29 rdf:first sg:person.0643037364.05
116 rdf:rest N93de6228e66d4482b9a4b1d01f89fd79
117 Nc257bef56d574322a8bd590c5a4a0a43 rdf:first sg:person.01227642637.82
118 rdf:rest N7820337db4cf4885918df4bf29c9c8ae
119 Nc4aadd92b3694ad492fbe459e64ed032 schema:affiliation N4f7e88bc9c714628bc8f219b489a4ccd
120 schema:familyName Miles
121 schema:givenName J
122 rdf:type schema:Person
123 Ncc959691d69643a4bdec41f0f8ef3579 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
126 schema:name Mathematical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
129 schema:name Statistics
130 rdf:type schema:DefinedTerm
131 sg:journal.1036306 schema:issn 1559-0631
132 1559-064X
133 schema:name Journal of Exposure Science & Environmental Epidemiology
134 rdf:type schema:Periodical
135 sg:person.01141622516.63 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
136 schema:familyName Wichmann
137 schema:givenName H E
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141622516.63
139 rdf:type schema:Person
140 sg:person.01227642637.82 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
141 schema:familyName Küchenhoff
142 schema:givenName H
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227642637.82
144 rdf:type schema:Person
145 sg:person.01366154613.34 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
146 schema:familyName Heid
147 schema:givenName I M
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366154613.34
149 rdf:type schema:Person
150 sg:person.0643037364.05 schema:affiliation https://www.grid.ac/institutes/grid.412970.9
151 schema:familyName Kreienbrock
152 schema:givenName L
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643037364.05
154 rdf:type schema:Person
155 sg:pub.10.1007/978-1-4899-4477-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705918
156 https://doi.org/10.1007/978-1-4899-4477-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/bjc.1998.506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019904661
159 https://doi.org/10.1038/bjc.1998.506
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/sj.jea.7500236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025320064
162 https://doi.org/10.1038/sj.jea.7500236
163 rdf:type schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1109705918 schema:CreativeWork
165 https://doi.org/10.1002/(sici)1097-0258(19981015)17:19<2157::aid-sim916>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1020187095
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/sim.1252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042902070
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/sim.4780080413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007861315
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/sim.4780080905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032437929
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/sim.4780080914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000557968
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1056/nejm199401203300302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012590744
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/aje/153.1.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032850014
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/biomet/71.1.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419386
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/ije/30.3.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010740171
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/oxfordjournals.aje.a115761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078564699
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/oxfordjournals.rpd.a031832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059965092
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/oxfordjournals.rpd.a080978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083632311
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/rpd/45.1-4.651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083500985
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/00004032-196412000-00036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026384027
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/00004032-199301000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035843866
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1097/00004032-199702000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006852488
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1097/00004032-199905000-00015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043368448
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/00004032-200003000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038649703
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/01.ede.0000071410.26053.c4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039915574
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.0006-341x.2001.00689.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046779320
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.0006-341x.2002.00013.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039756860
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1289/ehp.00108419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737032
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2307/3578953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070381414
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.412970.9 schema:alternateName University of Veterinary Medicine Hanover
212 schema:name Institute for Biometry, Epidemiology and Information Processing, Hanover School of Veterinary Medicine, Hanover, Germany
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.4567.0 schema:alternateName Helmholtz Zentrum München
215 schema:name GSF-National Research Center for Environment and Health, Insitute of Epidemiology, Neuherberg, Germany
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
218 schema:name Department of Statistics, Ludwig-Maximilians-Universtität München, Munich, Germany
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...