Cellular mechanism of insulin resistance: potential links with inflammation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-12

AUTHORS

G Perseghin, K Petersen, G I Shulman

ABSTRACT

Insulin resistance is a pivotal feature in the pathogenesis of type 2 diabetes, and it may be detected 10-20 y before the clinical onset of hyperglycemia. Insulin resistance is due to the reduced ability of peripheral target tissues to respond properly to insulin stimulation. In particular, impaired insulin-stimulated muscle glycogen synthesis plays a significant role in insulin resistance. Glucose transport (GLUT4), phosphorylation (hexokinase) and storage (glycogen synthase) are the three potential rate-controlling steps regulating insulin-stimulated muscle glucose metabolism, and all three have been implicated as being the major defects responsible for causing insulin resistance in patients with type 2 diabetes. Using (13)C/(31)P magnetic resonance spectroscopy (MRS), we demonstrate that a defect in insulin-stimulated muscle glucose transport activity is the rate-controlling defect. Using a similar (13)C/(31)P MRS approach, we have also demonstrated that fatty acids cause insulin resistance in humans due to a decrease in insulin-stimulated muscle glucose transport activity, which could be attributed to reduced insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, a required step in insulin-stimulated glucose transport into muscle. Furthermore, we have recently proposed that this defect in insulin-stimulated muscle glucose transport activity may be due to the activation of a serine kinase cascade involving protein kinase C theta and IKK-beta, which are key downstream mediators of tissue inflammation. Finally, we propose that any perturbation that leads to an increase in intramyocellular lipid (fatty acid metabolites) content such as acquired or inherited defects in mitochondrial fatty acid oxidation, defects in adipocyte fat metabolism or simply increased fat delivery to muscle/liver due to increased energy intake will lead to insulin resistance through this final common pathway. Understanding these key cellular mechanisms of insulin resistance should help elucidate new targets for treating type 2 diabetes. More... »

PAGES

0802491

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ijo.0802491

DOI

http://dx.doi.org/10.1038/sj.ijo.0802491

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048914233

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14704736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Internal Medicine\u2014Section of Nutrition/Metabolism and Unit of Clinical Spectroscopy, Istituto Scientifico H San Raffaele via Olgettina 60, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perseghin", 
        "givenName": "G", 
        "id": "sg:person.01071427023.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071427023.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petersen", 
        "givenName": "K", 
        "id": "sg:person.014300404317.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300404317.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA", 
            "Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA", 
            "Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shulman", 
        "givenName": "G I", 
        "id": "sg:person.01340446106.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340446106.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1172/jci11559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000789899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci118742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011856185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199001253220403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015268573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.1.2100.760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015561972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.92.4.983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028769501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199312303292703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028769558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci5001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033147510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m200958200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034197509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199610313351804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038398951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001250051123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039281035", 
          "https://doi.org/10.1007/s001250051123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001250051123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039281035", 
          "https://doi.org/10.1007/s001250051123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci115686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046082017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(63)91500-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048710880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(63)91500-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048710880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1439783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062482232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci14955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063415317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diab.46.6.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070738200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.47.3.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070743793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.48.6.1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070744204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-113-12-909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073694799"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-12", 
    "datePublishedReg": "2003-12-01", 
    "description": "Insulin resistance is a pivotal feature in the pathogenesis of type 2 diabetes, and it may be detected 10-20 y before the clinical onset of hyperglycemia. Insulin resistance is due to the reduced ability of peripheral target tissues to respond properly to insulin stimulation. In particular, impaired insulin-stimulated muscle glycogen synthesis plays a significant role in insulin resistance. Glucose transport (GLUT4), phosphorylation (hexokinase) and storage (glycogen synthase) are the three potential rate-controlling steps regulating insulin-stimulated muscle glucose metabolism, and all three have been implicated as being the major defects responsible for causing insulin resistance in patients with type 2 diabetes. Using (13)C/(31)P magnetic resonance spectroscopy (MRS), we demonstrate that a defect in insulin-stimulated muscle glucose transport activity is the rate-controlling defect. Using a similar (13)C/(31)P MRS approach, we have also demonstrated that fatty acids cause insulin resistance in humans due to a decrease in insulin-stimulated muscle glucose transport activity, which could be attributed to reduced insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, a required step in insulin-stimulated glucose transport into muscle. Furthermore, we have recently proposed that this defect in insulin-stimulated muscle glucose transport activity may be due to the activation of a serine kinase cascade involving protein kinase C theta and IKK-beta, which are key downstream mediators of tissue inflammation. Finally, we propose that any perturbation that leads to an increase in intramyocellular lipid (fatty acid metabolites) content such as acquired or inherited defects in mitochondrial fatty acid oxidation, defects in adipocyte fat metabolism or simply increased fat delivery to muscle/liver due to increased energy intake will lead to insulin resistance through this final common pathway. Understanding these key cellular mechanisms of insulin resistance should help elucidate new targets for treating type 2 diabetes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.ijo.0802491", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2494009", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1035838", 
        "issn": [
          "0307-0565", 
          "1476-5497"
        ], 
        "name": "International Journal of Obesity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "S3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Cellular mechanism of insulin resistance: potential links with inflammation", 
    "pagination": "0802491", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9047c20ca04c009aeed611fac8839197b479d6add25c48ba3417d9340889f30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14704736"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9313169"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ijo.0802491"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048914233"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ijo.0802491", 
      "https://app.dimensions.ai/details/publication/pub.1048914233"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53999_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/0802491"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ijo.0802491'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ijo.0802491'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ijo.0802491'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ijo.0802491'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      54 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ijo.0802491 schema:about N065b80344b68477c84c3b794f12845e9
2 N12abb1656da441ddb1ec4acad30a2aec
3 N3e45e209980648b9b069769eb8472cc8
4 N464a44edc193488f864f4430cf37be05
5 N9bdb221204314a1593c433a256220192
6 Nae18e9989e2b48d4b19d9c85a930abf7
7 Ndc0c75e89dba4b7a8d23145caecc140a
8 anzsrc-for:11
9 anzsrc-for:1103
10 schema:author N2a721ed677fc4f0da6ee9e2d8647b355
11 schema:citation sg:pub.10.1007/s001250051123
12 https://doi.org/10.1016/s0140-6736(63)91500-9
13 https://doi.org/10.1056/nejm199001253220403
14 https://doi.org/10.1056/nejm199312303292703
15 https://doi.org/10.1056/nejm199610313351804
16 https://doi.org/10.1073/pnas.92.4.983
17 https://doi.org/10.1074/jbc.m200958200
18 https://doi.org/10.1126/science.1439783
19 https://doi.org/10.1136/bmj.1.2100.760
20 https://doi.org/10.1172/jci11559
21 https://doi.org/10.1172/jci115686
22 https://doi.org/10.1172/jci118742
23 https://doi.org/10.1172/jci14955
24 https://doi.org/10.1172/jci5001
25 https://doi.org/10.2337/diab.46.6.1001
26 https://doi.org/10.2337/diabetes.47.3.381
27 https://doi.org/10.2337/diabetes.48.6.1270
28 https://doi.org/10.7326/0003-4819-113-12-909
29 schema:datePublished 2003-12
30 schema:datePublishedReg 2003-12-01
31 schema:description Insulin resistance is a pivotal feature in the pathogenesis of type 2 diabetes, and it may be detected 10-20 y before the clinical onset of hyperglycemia. Insulin resistance is due to the reduced ability of peripheral target tissues to respond properly to insulin stimulation. In particular, impaired insulin-stimulated muscle glycogen synthesis plays a significant role in insulin resistance. Glucose transport (GLUT4), phosphorylation (hexokinase) and storage (glycogen synthase) are the three potential rate-controlling steps regulating insulin-stimulated muscle glucose metabolism, and all three have been implicated as being the major defects responsible for causing insulin resistance in patients with type 2 diabetes. Using (13)C/(31)P magnetic resonance spectroscopy (MRS), we demonstrate that a defect in insulin-stimulated muscle glucose transport activity is the rate-controlling defect. Using a similar (13)C/(31)P MRS approach, we have also demonstrated that fatty acids cause insulin resistance in humans due to a decrease in insulin-stimulated muscle glucose transport activity, which could be attributed to reduced insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, a required step in insulin-stimulated glucose transport into muscle. Furthermore, we have recently proposed that this defect in insulin-stimulated muscle glucose transport activity may be due to the activation of a serine kinase cascade involving protein kinase C theta and IKK-beta, which are key downstream mediators of tissue inflammation. Finally, we propose that any perturbation that leads to an increase in intramyocellular lipid (fatty acid metabolites) content such as acquired or inherited defects in mitochondrial fatty acid oxidation, defects in adipocyte fat metabolism or simply increased fat delivery to muscle/liver due to increased energy intake will lead to insulin resistance through this final common pathway. Understanding these key cellular mechanisms of insulin resistance should help elucidate new targets for treating type 2 diabetes.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N7f18bb3c3b784c12b3da78243a292304
36 Nb01dd57f5e5c4ea0a9f8e28f41a6ba2f
37 sg:journal.1035838
38 schema:name Cellular mechanism of insulin resistance: potential links with inflammation
39 schema:pagination 0802491
40 schema:productId N68747b1373a841b98d0fcabcc05d7803
41 N9febe64660fe41009962034b6cf97385
42 Na7fdfb49214047878d3c7bfb9e59f9ce
43 Nd4367eaba1cf43859bd096fa446da6cb
44 Ne3349258013748a1a78c377acf9130ed
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048914233
46 https://doi.org/10.1038/sj.ijo.0802491
47 schema:sdDatePublished 2019-04-11T12:13
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N61ffe130e89d475eac82514c47074e78
50 schema:url http://www.nature.com/articles/0802491
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N065b80344b68477c84c3b794f12845e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Inflammation
56 rdf:type schema:DefinedTerm
57 N12abb1656da441ddb1ec4acad30a2aec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Insulin Resistance
59 rdf:type schema:DefinedTerm
60 N25b90c2d6a76402190dc3bdd9c32f507 schema:name Internal Medicine—Section of Nutrition/Metabolism and Unit of Clinical Spectroscopy, Istituto Scientifico H San Raffaele via Olgettina 60, Milan, Italy
61 rdf:type schema:Organization
62 N2a721ed677fc4f0da6ee9e2d8647b355 rdf:first sg:person.01071427023.55
63 rdf:rest N550bbf7805dd4e1d8eb1918cdaed44f0
64 N3e45e209980648b9b069769eb8472cc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Muscle, Skeletal
66 rdf:type schema:DefinedTerm
67 N464a44edc193488f864f4430cf37be05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Diabetes Mellitus, Type 2
69 rdf:type schema:DefinedTerm
70 N550bbf7805dd4e1d8eb1918cdaed44f0 rdf:first sg:person.014300404317.81
71 rdf:rest N80fb683a6bf94b47a10732d920127154
72 N61ffe130e89d475eac82514c47074e78 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N68747b1373a841b98d0fcabcc05d7803 schema:name doi
75 schema:value 10.1038/sj.ijo.0802491
76 rdf:type schema:PropertyValue
77 N7f18bb3c3b784c12b3da78243a292304 schema:volumeNumber 27
78 rdf:type schema:PublicationVolume
79 N80fb683a6bf94b47a10732d920127154 rdf:first sg:person.01340446106.39
80 rdf:rest rdf:nil
81 N9bdb221204314a1593c433a256220192 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Humans
83 rdf:type schema:DefinedTerm
84 N9febe64660fe41009962034b6cf97385 schema:name nlm_unique_id
85 schema:value 9313169
86 rdf:type schema:PropertyValue
87 Na7fdfb49214047878d3c7bfb9e59f9ce schema:name readcube_id
88 schema:value e9047c20ca04c009aeed611fac8839197b479d6add25c48ba3417d9340889f30
89 rdf:type schema:PropertyValue
90 Nae18e9989e2b48d4b19d9c85a930abf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Glucose
92 rdf:type schema:DefinedTerm
93 Nb01dd57f5e5c4ea0a9f8e28f41a6ba2f schema:issueNumber S3
94 rdf:type schema:PublicationIssue
95 Nd4367eaba1cf43859bd096fa446da6cb schema:name dimensions_id
96 schema:value pub.1048914233
97 rdf:type schema:PropertyValue
98 Ndc0c75e89dba4b7a8d23145caecc140a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Fatty Acids
100 rdf:type schema:DefinedTerm
101 Ne3349258013748a1a78c377acf9130ed schema:name pubmed_id
102 schema:value 14704736
103 rdf:type schema:PropertyValue
104 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
105 schema:name Medical and Health Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
108 schema:name Clinical Sciences
109 rdf:type schema:DefinedTerm
110 sg:grant.2494009 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ijo.0802491
111 rdf:type schema:MonetaryGrant
112 sg:journal.1035838 schema:issn 0307-0565
113 1476-5497
114 schema:name International Journal of Obesity
115 rdf:type schema:Periodical
116 sg:person.01071427023.55 schema:affiliation N25b90c2d6a76402190dc3bdd9c32f507
117 schema:familyName Perseghin
118 schema:givenName G
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071427023.55
120 rdf:type schema:Person
121 sg:person.01340446106.39 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
122 schema:familyName Shulman
123 schema:givenName G I
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340446106.39
125 rdf:type schema:Person
126 sg:person.014300404317.81 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
127 schema:familyName Petersen
128 schema:givenName K
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300404317.81
130 rdf:type schema:Person
131 sg:pub.10.1007/s001250051123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039281035
132 https://doi.org/10.1007/s001250051123
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0140-6736(63)91500-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048710880
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1056/nejm199001253220403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015268573
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1056/nejm199312303292703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028769558
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1056/nejm199610313351804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038398951
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.92.4.983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028769501
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1074/jbc.m200958200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034197509
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1126/science.1439783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062482232
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1136/bmj.1.2100.760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015561972
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1172/jci11559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000789899
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1172/jci115686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046082017
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1172/jci118742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011856185
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1172/jci14955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063415317
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1172/jci5001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033147510
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2337/diab.46.6.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070738200
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2337/diabetes.47.3.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070743793
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2337/diabetes.48.6.1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070744204
165 rdf:type schema:CreativeWork
166 https://doi.org/10.7326/0003-4819-113-12-909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073694799
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
169 schema:name Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
170 Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
171 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...