Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02-19

AUTHORS

S Kaliberov, M A Stackhouse, L Kaliberova, T Zhou, D J Buchsbaum

ABSTRACT

Specific activation of apoptosis in tumor cells offers a promising approach for cancer therapy. Induction of apoptosis leads to activation of specific proteases. Two major pathways for caspase activation in mammalian cells have been described. One apoptotic pathway involves members of the tumor necrosis factor family of cytokine receptors (eg death receptor 5 (DR5)). The other pathway is controlled by the Bcl-2 family of proteins. The purpose of this study was to investigate whether increased apoptosis occurs in human glioma cells following infection with a recombinant adenoviral vector encoding the human Bax gene under the control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBax) in combination with an anti-human DR5 monoclonal antibody (TRA-8). Specific overexpression of exogenous Bax protein induced apoptosis and cell death in glioma cell lines, through activation of both caspase-8 and -9, leading to activation of downstream caspase-3. The relative sensitivity to AdVEGFBax for the glioma cell lines was U251MG>U373MG>U87MG>D54MG. The recently characterized TRA-8 monoclonal antibody induces apoptosis of most TRAIL-sensitive tumor cells by specific binding to DR5 receptors on the cellular membrane. TRA-8 induced rapid apoptosis and cell death in glioma cells, but did not demonstrate detectable cytotoxicity of primary normal human astrocytes. The efficiency of TRA-8-induced apoptosis was variable in different glioma cell lines. The relative sensitivity to TRA-8 was U373MG>U87MG>U251MG>D54MG. The combination of TRA-8 treatment and overexpression of Bax overcame TRA-8 resistance of glioma cells in vitro. Cell viability of U251MG cells was 71.1% for TRA-8 (100 ng/ml) alone, 75.9% for AdVEGFBax (5 MOI) alone and 41.1% for their combination as measured by MTS assay. Similar enhanced apoptosis results were obtained for the other glioma cell lines. In vivo studies demonstrated that the combined treatment significantly (P<0.05) suppressed the growth of U251MG xenografts and produced 60% complete tumor regressions without recurrence. These data suggest that the combination of TRA-8 treatment with specific overexpression of Bax using AdVEGFBax may be an effective approach for the treatment of human malignant gliomas. More... »

PAGES

658-667

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.gt.3302215

DOI

http://dx.doi.org/10.1038/sj.gt.3302215

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013484231

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14973547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenoviridae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Monoclonal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apoptosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blotting, Western", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caspases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Combined Modality Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Fragmentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flow Cytometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Nude", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proto-Oncogene Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proto-Oncogene Proteins c-bcl-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, TNF-Related Apoptosis-Inducing Ligand", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Tumor Necrosis Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Endothelial Growth Factor A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "bcl-2-Associated X Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaliberov", 
        "givenName": "S", 
        "id": "sg:person.01206020250.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206020250.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stackhouse", 
        "givenName": "M A", 
        "id": "sg:person.07463757344.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463757344.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaliberova", 
        "givenName": "L", 
        "id": "sg:person.01051663455.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051663455.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "T", 
        "id": "sg:person.0664616100.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664616100.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buchsbaum", 
        "givenName": "D J", 
        "id": "sg:person.01137705050.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137705050.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35008667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012881410", 
          "https://doi.org/10.1038/35008667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/5517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010598958", 
          "https://doi.org/10.1038/5517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/40657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027258655", 
          "https://doi.org/10.1038/40657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cr.7290045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037896923", 
          "https://doi.org/10.1038/sj.cr.7290045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/91000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047281881", 
          "https://doi.org/10.1038/91000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69184-6_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019528391", 
          "https://doi.org/10.1007/978-3-540-69184-6_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cgt.7700158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031345645", 
          "https://doi.org/10.1038/sj.cgt.7700158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0302-274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024488928", 
          "https://doi.org/10.1038/nm0302-274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014817268", 
          "https://doi.org/10.1038/sj.gt.3301531"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-02-19", 
    "datePublishedReg": "2004-02-19", 
    "description": "Specific activation of apoptosis in tumor cells offers a promising approach for cancer therapy. Induction of apoptosis leads to activation of specific proteases. Two major pathways for caspase activation in mammalian cells have been described. One apoptotic pathway involves members of the tumor necrosis factor family of cytokine receptors (eg death receptor 5 (DR5)). The other pathway is controlled by the Bcl-2 family of proteins. The purpose of this study was to investigate whether increased apoptosis occurs in human glioma cells following infection with a recombinant adenoviral vector encoding the human Bax gene under the control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBax) in combination with an anti-human DR5 monoclonal antibody (TRA-8). Specific overexpression of exogenous Bax protein induced apoptosis and cell death in glioma cell lines, through activation of both caspase-8 and -9, leading to activation of downstream caspase-3. The relative sensitivity to AdVEGFBax for the glioma cell lines was U251MG>U373MG>U87MG>D54MG. The recently characterized TRA-8 monoclonal antibody induces apoptosis of most TRAIL-sensitive tumor cells by specific binding to DR5 receptors on the cellular membrane. TRA-8 induced rapid apoptosis and cell death in glioma cells, but did not demonstrate detectable cytotoxicity of primary normal human astrocytes. The efficiency of TRA-8-induced apoptosis was variable in different glioma cell lines. The relative sensitivity to TRA-8 was U373MG>U87MG>U251MG>D54MG. The combination of TRA-8 treatment and overexpression of Bax overcame TRA-8 resistance of glioma cells in vitro. Cell viability of U251MG cells was 71.1% for TRA-8 (100\u2009ng/ml) alone, 75.9% for AdVEGFBax (5\u2009MOI) alone and 41.1% for their combination as measured by MTS assay. Similar enhanced apoptosis results were obtained for the other glioma cell lines. In vivo studies demonstrated that the combined treatment significantly (P<0.05) suppressed the growth of U251MG xenografts and produced 60% complete tumor regressions without recurrence. These data suggest that the combination of TRA-8 treatment with specific overexpression of Bax using AdVEGFBax may be an effective approach for the treatment of human malignant gliomas.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/sj.gt.3302215", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105638", 
        "issn": [
          "0969-7128", 
          "1476-5462"
        ], 
        "name": "Gene Therapy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "glioma cell lines", 
      "cell lines", 
      "cell death", 
      "human glioma cells", 
      "downstream caspase-3", 
      "human bax gene", 
      "Bcl-2 family", 
      "glioma cells", 
      "TRA-8 treatment", 
      "specific overexpression", 
      "induction of apoptosis", 
      "TRA-8-induced apoptosis", 
      "different glioma cell lines", 
      "primary normal human astrocytes", 
      "mammalian cells", 
      "promoter elements", 
      "caspase activation", 
      "factor family", 
      "apoptotic pathway", 
      "tumor necrosis factor family", 
      "caspase-8", 
      "normal human astrocytes", 
      "cellular membranes", 
      "specific proteases", 
      "cytokine receptors", 
      "apoptosis results", 
      "rapid apoptosis", 
      "TRA-8", 
      "Bax gene", 
      "monoclonal antibodies", 
      "Bax protein", 
      "tumor cells", 
      "exogenous Bax", 
      "overexpression", 
      "caspase-3", 
      "apoptosis", 
      "U251MG cells", 
      "DR5 receptors", 
      "major pathway", 
      "necrosis factor family", 
      "specific activation", 
      "MTS assay", 
      "pathway", 
      "human malignant gliomas", 
      "cell viability", 
      "recombinant adenoviral vector", 
      "protein", 
      "human astrocytes", 
      "cells", 
      "activation", 
      "Bax", 
      "specific binding", 
      "cancer therapy", 
      "TRAIL-sensitive tumor cells", 
      "U87MG", 
      "detectable cytotoxicity", 
      "adenoviral vector", 
      "family", 
      "receptors", 
      "genes", 
      "relative sensitivity", 
      "lines", 
      "protease", 
      "binding", 
      "U251MG", 
      "D54MG", 
      "membrane", 
      "vivo studies", 
      "induction", 
      "assays", 
      "antibodies", 
      "viability", 
      "malignant gliomas", 
      "members", 
      "growth", 
      "death", 
      "cytotoxicity", 
      "astrocytes", 
      "combination", 
      "xenografts", 
      "vector", 
      "promising approach", 
      "resistance", 
      "gliomas", 
      "tumor regression", 
      "study", 
      "treatment", 
      "sensitivity", 
      "infection", 
      "elements", 
      "effective approach", 
      "control", 
      "complete tumor regression", 
      "approach", 
      "data", 
      "results", 
      "efficiency", 
      "therapy", 
      "purpose", 
      "regression", 
      "recurrence"
    ], 
    "name": "Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells", 
    "pagination": "658-667", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013484231"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.gt.3302215"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14973547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.gt.3302215", 
      "https://app.dimensions.ai/details/publication/pub.1013484231"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_381.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/sj.gt.3302215"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3302215'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3302215'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3302215'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3302215'


 

This table displays all metadata directly associated to this object as RDF triples.

345 TRIPLES      22 PREDICATES      165 URIs      146 LITERALS      34 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.gt.3302215 schema:about N3d23a4d2fae8476095ab9ba681427216
2 N3fdfb5ac458f4bbb9fe7bc791443413b
3 N428e5f9a1b0f4df7a957958777402308
4 N4b3a1ad2cbfb474fb1b8f8282ef2ab26
5 N4fd0ef0093e047d3b1df5279e4fa8d9d
6 N56b4814a7de44fed99423dbae2624212
7 N5a46eb3b7e5e4cd78487d7d6917027c9
8 N5ffb548433e5412983647381eef3d594
9 N6cd4054aa27e437d9c3c9a11cfaccf32
10 N7315afd2cb474701abf5a06e62eb27ab
11 N73304d33379e4a64b7430c0513113191
12 N7a8d7e02506d459fbb2493d250f7750f
13 N7be48a2f005f4a4fa3745755aa1d1bbd
14 N7e0cfd616ed1416fb4b7f53a1c386a63
15 N8d8889e544044416acea2b2248a5019f
16 N8dd09caa75224af388b78839267584a9
17 N8e1aa7fef4ec47679618ba3890c11253
18 N9591dd380a1c4d1c9b5828a15ec1a7b0
19 N9e6e68b3f1dc4a6d9adfa8b70362533f
20 Nbac81996ad694957a9541ba0e179999f
21 Nbdb8bcf49e2b4a0e8350d2a8632713c5
22 Nc6345627121544df9d4bf6532ca33209
23 Nd31b1c7e00c74e778247878d60a277b5
24 Nd353014d57184624b5cfdc5fb35610f9
25 Ndcc3bfea424345059b8350d1abec1e0a
26 Ne85ff9e9b6ed4367b8d1a48e4790da7c
27 Nf9153951e8774ca2841240ce9be3ead6
28 anzsrc-for:06
29 anzsrc-for:0601
30 anzsrc-for:11
31 anzsrc-for:1112
32 schema:author N2623d29045cc4822b652626ed46abbd0
33 schema:citation sg:pub.10.1007/978-3-540-69184-6_3
34 sg:pub.10.1038/35008667
35 sg:pub.10.1038/40657
36 sg:pub.10.1038/5517
37 sg:pub.10.1038/91000
38 sg:pub.10.1038/nm0302-274
39 sg:pub.10.1038/sj.cgt.7700158
40 sg:pub.10.1038/sj.cr.7290045
41 sg:pub.10.1038/sj.gt.3301531
42 schema:datePublished 2004-02-19
43 schema:datePublishedReg 2004-02-19
44 schema:description Specific activation of apoptosis in tumor cells offers a promising approach for cancer therapy. Induction of apoptosis leads to activation of specific proteases. Two major pathways for caspase activation in mammalian cells have been described. One apoptotic pathway involves members of the tumor necrosis factor family of cytokine receptors (eg death receptor 5 (DR5)). The other pathway is controlled by the Bcl-2 family of proteins. The purpose of this study was to investigate whether increased apoptosis occurs in human glioma cells following infection with a recombinant adenoviral vector encoding the human Bax gene under the control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBax) in combination with an anti-human DR5 monoclonal antibody (TRA-8). Specific overexpression of exogenous Bax protein induced apoptosis and cell death in glioma cell lines, through activation of both caspase-8 and -9, leading to activation of downstream caspase-3. The relative sensitivity to AdVEGFBax for the glioma cell lines was U251MG>U373MG>U87MG>D54MG. The recently characterized TRA-8 monoclonal antibody induces apoptosis of most TRAIL-sensitive tumor cells by specific binding to DR5 receptors on the cellular membrane. TRA-8 induced rapid apoptosis and cell death in glioma cells, but did not demonstrate detectable cytotoxicity of primary normal human astrocytes. The efficiency of TRA-8-induced apoptosis was variable in different glioma cell lines. The relative sensitivity to TRA-8 was U373MG>U87MG>U251MG>D54MG. The combination of TRA-8 treatment and overexpression of Bax overcame TRA-8 resistance of glioma cells in vitro. Cell viability of U251MG cells was 71.1% for TRA-8 (100 ng/ml) alone, 75.9% for AdVEGFBax (5 MOI) alone and 41.1% for their combination as measured by MTS assay. Similar enhanced apoptosis results were obtained for the other glioma cell lines. In vivo studies demonstrated that the combined treatment significantly (P<0.05) suppressed the growth of U251MG xenografts and produced 60% complete tumor regressions without recurrence. These data suggest that the combination of TRA-8 treatment with specific overexpression of Bax using AdVEGFBax may be an effective approach for the treatment of human malignant gliomas.
45 schema:genre article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N400fce490285479a82b6bf3970f303ab
49 N9bdfe633f9af46a38393206005cf5884
50 sg:journal.1105638
51 schema:keywords Bax
52 Bax gene
53 Bax protein
54 Bcl-2 family
55 D54MG
56 DR5 receptors
57 MTS assay
58 TRA-8
59 TRA-8 treatment
60 TRA-8-induced apoptosis
61 TRAIL-sensitive tumor cells
62 U251MG
63 U251MG cells
64 U87MG
65 activation
66 adenoviral vector
67 antibodies
68 apoptosis
69 apoptosis results
70 apoptotic pathway
71 approach
72 assays
73 astrocytes
74 binding
75 cancer therapy
76 caspase activation
77 caspase-3
78 caspase-8
79 cell death
80 cell lines
81 cell viability
82 cells
83 cellular membranes
84 combination
85 complete tumor regression
86 control
87 cytokine receptors
88 cytotoxicity
89 data
90 death
91 detectable cytotoxicity
92 different glioma cell lines
93 downstream caspase-3
94 effective approach
95 efficiency
96 elements
97 exogenous Bax
98 factor family
99 family
100 genes
101 glioma cell lines
102 glioma cells
103 gliomas
104 growth
105 human astrocytes
106 human bax gene
107 human glioma cells
108 human malignant gliomas
109 induction
110 induction of apoptosis
111 infection
112 lines
113 major pathway
114 malignant gliomas
115 mammalian cells
116 members
117 membrane
118 monoclonal antibodies
119 necrosis factor family
120 normal human astrocytes
121 overexpression
122 pathway
123 primary normal human astrocytes
124 promising approach
125 promoter elements
126 protease
127 protein
128 purpose
129 rapid apoptosis
130 receptors
131 recombinant adenoviral vector
132 recurrence
133 regression
134 relative sensitivity
135 resistance
136 results
137 sensitivity
138 specific activation
139 specific binding
140 specific overexpression
141 specific proteases
142 study
143 therapy
144 treatment
145 tumor cells
146 tumor necrosis factor family
147 tumor regression
148 vector
149 viability
150 vivo studies
151 xenografts
152 schema:name Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells
153 schema:pagination 658-667
154 schema:productId N1710dfde530c4873aed501867b673037
155 N207208a437924cbb8613dc8159a3ccf5
156 Nb130fbac748b4538971a98ef22872137
157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013484231
158 https://doi.org/10.1038/sj.gt.3302215
159 schema:sdDatePublished 2022-06-01T22:03
160 schema:sdLicense https://scigraph.springernature.com/explorer/license/
161 schema:sdPublisher N967d2f948b6d437981a1165885b5a985
162 schema:url https://doi.org/10.1038/sj.gt.3302215
163 sgo:license sg:explorer/license/
164 sgo:sdDataset articles
165 rdf:type schema:ScholarlyArticle
166 N1710dfde530c4873aed501867b673037 schema:name pubmed_id
167 schema:value 14973547
168 rdf:type schema:PropertyValue
169 N207208a437924cbb8613dc8159a3ccf5 schema:name doi
170 schema:value 10.1038/sj.gt.3302215
171 rdf:type schema:PropertyValue
172 N2623d29045cc4822b652626ed46abbd0 rdf:first sg:person.01206020250.68
173 rdf:rest Ndc6751b9a96b43468859cf47dd8ce5c5
174 N3d23a4d2fae8476095ab9ba681427216 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Female
176 rdf:type schema:DefinedTerm
177 N3fdfb5ac458f4bbb9fe7bc791443413b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name DNA Fragmentation
179 rdf:type schema:DefinedTerm
180 N400fce490285479a82b6bf3970f303ab schema:volumeNumber 11
181 rdf:type schema:PublicationVolume
182 N428e5f9a1b0f4df7a957958777402308 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Gene Expression
184 rdf:type schema:DefinedTerm
185 N4b3a1ad2cbfb474fb1b8f8282ef2ab26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Apoptosis
187 rdf:type schema:DefinedTerm
188 N4fd0ef0093e047d3b1df5279e4fa8d9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Receptors, Tumor Necrosis Factor
190 rdf:type schema:DefinedTerm
191 N56b4814a7de44fed99423dbae2624212 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Humans
193 rdf:type schema:DefinedTerm
194 N5a46eb3b7e5e4cd78487d7d6917027c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Promoter Regions, Genetic
196 rdf:type schema:DefinedTerm
197 N5ffb548433e5412983647381eef3d594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Adenoviridae
199 rdf:type schema:DefinedTerm
200 N6546a586e33e48e4945142280150227b rdf:first sg:person.01137705050.57
201 rdf:rest rdf:nil
202 N6cd4054aa27e437d9c3c9a11cfaccf32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Proto-Oncogene Proteins c-bcl-2
204 rdf:type schema:DefinedTerm
205 N7315afd2cb474701abf5a06e62eb27ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Genetic Vectors
207 rdf:type schema:DefinedTerm
208 N73304d33379e4a64b7430c0513113191 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Glioma
210 rdf:type schema:DefinedTerm
211 N7a8d7e02506d459fbb2493d250f7750f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name bcl-2-Associated X Protein
213 rdf:type schema:DefinedTerm
214 N7be48a2f005f4a4fa3745755aa1d1bbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Receptors, TNF-Related Apoptosis-Inducing Ligand
216 rdf:type schema:DefinedTerm
217 N7e0cfd616ed1416fb4b7f53a1c386a63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Vascular Endothelial Growth Factor A
219 rdf:type schema:DefinedTerm
220 N8d8889e544044416acea2b2248a5019f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Cell Line, Tumor
222 rdf:type schema:DefinedTerm
223 N8dd09caa75224af388b78839267584a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Proto-Oncogene Proteins
225 rdf:type schema:DefinedTerm
226 N8e1aa7fef4ec47679618ba3890c11253 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
227 schema:name Antibodies, Monoclonal
228 rdf:type schema:DefinedTerm
229 N9591dd380a1c4d1c9b5828a15ec1a7b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
230 schema:name Mice, Nude
231 rdf:type schema:DefinedTerm
232 N967d2f948b6d437981a1165885b5a985 schema:name Springer Nature - SN SciGraph project
233 rdf:type schema:Organization
234 N9bdfe633f9af46a38393206005cf5884 schema:issueNumber 8
235 rdf:type schema:PublicationIssue
236 N9e6e68b3f1dc4a6d9adfa8b70362533f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
237 schema:name Brain Neoplasms
238 rdf:type schema:DefinedTerm
239 Na8940fbf3a914a46b68e6597a25404ed rdf:first sg:person.0664616100.38
240 rdf:rest N6546a586e33e48e4945142280150227b
241 Nb130fbac748b4538971a98ef22872137 schema:name dimensions_id
242 schema:value pub.1013484231
243 rdf:type schema:PropertyValue
244 Nbac81996ad694957a9541ba0e179999f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
245 schema:name Flow Cytometry
246 rdf:type schema:DefinedTerm
247 Nbdb8bcf49e2b4a0e8350d2a8632713c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
248 schema:name Mice
249 rdf:type schema:DefinedTerm
250 Nc6345627121544df9d4bf6532ca33209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
251 schema:name Animals
252 rdf:type schema:DefinedTerm
253 Nd31b1c7e00c74e778247878d60a277b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
254 schema:name Caspases
255 rdf:type schema:DefinedTerm
256 Nd353014d57184624b5cfdc5fb35610f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
257 schema:name Combined Modality Therapy
258 rdf:type schema:DefinedTerm
259 Ndc6751b9a96b43468859cf47dd8ce5c5 rdf:first sg:person.07463757344.94
260 rdf:rest Nf6fc998aebc44686804765b9f5cf9298
261 Ndcc3bfea424345059b8350d1abec1e0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
262 schema:name Genetic Therapy
263 rdf:type schema:DefinedTerm
264 Ne85ff9e9b6ed4367b8d1a48e4790da7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
265 schema:name Cell Death
266 rdf:type schema:DefinedTerm
267 Nf6fc998aebc44686804765b9f5cf9298 rdf:first sg:person.01051663455.47
268 rdf:rest Na8940fbf3a914a46b68e6597a25404ed
269 Nf9153951e8774ca2841240ce9be3ead6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
270 schema:name Blotting, Western
271 rdf:type schema:DefinedTerm
272 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
273 schema:name Biological Sciences
274 rdf:type schema:DefinedTerm
275 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
276 schema:name Biochemistry and Cell Biology
277 rdf:type schema:DefinedTerm
278 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
279 schema:name Medical and Health Sciences
280 rdf:type schema:DefinedTerm
281 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
282 schema:name Oncology and Carcinogenesis
283 rdf:type schema:DefinedTerm
284 sg:journal.1105638 schema:issn 0969-7128
285 1476-5462
286 schema:name Gene Therapy
287 schema:publisher Springer Nature
288 rdf:type schema:Periodical
289 sg:person.01051663455.47 schema:affiliation grid-institutes:grid.265892.2
290 schema:familyName Kaliberova
291 schema:givenName L
292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051663455.47
293 rdf:type schema:Person
294 sg:person.01137705050.57 schema:affiliation grid-institutes:grid.265892.2
295 schema:familyName Buchsbaum
296 schema:givenName D J
297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137705050.57
298 rdf:type schema:Person
299 sg:person.01206020250.68 schema:affiliation grid-institutes:grid.265892.2
300 schema:familyName Kaliberov
301 schema:givenName S
302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206020250.68
303 rdf:type schema:Person
304 sg:person.0664616100.38 schema:affiliation grid-institutes:grid.265892.2
305 schema:familyName Zhou
306 schema:givenName T
307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664616100.38
308 rdf:type schema:Person
309 sg:person.07463757344.94 schema:affiliation grid-institutes:grid.265892.2
310 schema:familyName Stackhouse
311 schema:givenName M A
312 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463757344.94
313 rdf:type schema:Person
314 sg:pub.10.1007/978-3-540-69184-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019528391
315 https://doi.org/10.1007/978-3-540-69184-6_3
316 rdf:type schema:CreativeWork
317 sg:pub.10.1038/35008667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012881410
318 https://doi.org/10.1038/35008667
319 rdf:type schema:CreativeWork
320 sg:pub.10.1038/40657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027258655
321 https://doi.org/10.1038/40657
322 rdf:type schema:CreativeWork
323 sg:pub.10.1038/5517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598958
324 https://doi.org/10.1038/5517
325 rdf:type schema:CreativeWork
326 sg:pub.10.1038/91000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047281881
327 https://doi.org/10.1038/91000
328 rdf:type schema:CreativeWork
329 sg:pub.10.1038/nm0302-274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024488928
330 https://doi.org/10.1038/nm0302-274
331 rdf:type schema:CreativeWork
332 sg:pub.10.1038/sj.cgt.7700158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031345645
333 https://doi.org/10.1038/sj.cgt.7700158
334 rdf:type schema:CreativeWork
335 sg:pub.10.1038/sj.cr.7290045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037896923
336 https://doi.org/10.1038/sj.cr.7290045
337 rdf:type schema:CreativeWork
338 sg:pub.10.1038/sj.gt.3301531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014817268
339 https://doi.org/10.1038/sj.gt.3301531
340 rdf:type schema:CreativeWork
341 grid-institutes:grid.265892.2 schema:alternateName Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
342 Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
343 schema:name Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
344 Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
345 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...