Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02-19

AUTHORS

S Kaliberov, M A Stackhouse, L Kaliberova, T Zhou, D J Buchsbaum

ABSTRACT

Specific activation of apoptosis in tumor cells offers a promising approach for cancer therapy. Induction of apoptosis leads to activation of specific proteases. Two major pathways for caspase activation in mammalian cells have been described. One apoptotic pathway involves members of the tumor necrosis factor family of cytokine receptors (eg death receptor 5 (DR5)). The other pathway is controlled by the Bcl-2 family of proteins. The purpose of this study was to investigate whether increased apoptosis occurs in human glioma cells following infection with a recombinant adenoviral vector encoding the human Bax gene under the control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBax) in combination with an anti-human DR5 monoclonal antibody (TRA-8). Specific overexpression of exogenous Bax protein induced apoptosis and cell death in glioma cell lines, through activation of both caspase-8 and -9, leading to activation of downstream caspase-3. The relative sensitivity to AdVEGFBax for the glioma cell lines was U251MG>U373MG>U87MG>D54MG. The recently characterized TRA-8 monoclonal antibody induces apoptosis of most TRAIL-sensitive tumor cells by specific binding to DR5 receptors on the cellular membrane. TRA-8 induced rapid apoptosis and cell death in glioma cells, but did not demonstrate detectable cytotoxicity of primary normal human astrocytes. The efficiency of TRA-8-induced apoptosis was variable in different glioma cell lines. The relative sensitivity to TRA-8 was U373MG>U87MG>U251MG>D54MG. The combination of TRA-8 treatment and overexpression of Bax overcame TRA-8 resistance of glioma cells in vitro. Cell viability of U251MG cells was 71.1% for TRA-8 (100 ng/ml) alone, 75.9% for AdVEGFBax (5 MOI) alone and 41.1% for their combination as measured by MTS assay. Similar enhanced apoptosis results were obtained for the other glioma cell lines. In vivo studies demonstrated that the combined treatment significantly (P<0.05) suppressed the growth of U251MG xenografts and produced 60% complete tumor regressions without recurrence. These data suggest that the combination of TRA-8 treatment with specific overexpression of Bax using AdVEGFBax may be an effective approach for the treatment of human malignant gliomas. More... »

PAGES

658-667

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.gt.3302215

DOI

http://dx.doi.org/10.1038/sj.gt.3302215

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013484231

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14973547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenoviridae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Monoclonal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apoptosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blotting, Western", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caspases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Combined Modality Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Fragmentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flow Cytometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Nude", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proto-Oncogene Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proto-Oncogene Proteins c-bcl-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, TNF-Related Apoptosis-Inducing Ligand", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Tumor Necrosis Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Endothelial Growth Factor A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "bcl-2-Associated X Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaliberov", 
        "givenName": "S", 
        "id": "sg:person.01206020250.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206020250.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stackhouse", 
        "givenName": "M A", 
        "id": "sg:person.07463757344.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463757344.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaliberova", 
        "givenName": "L", 
        "id": "sg:person.01051663455.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051663455.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "T", 
        "id": "sg:person.0664616100.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664616100.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buchsbaum", 
        "givenName": "D J", 
        "id": "sg:person.01137705050.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137705050.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35008667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012881410", 
          "https://doi.org/10.1038/35008667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/40657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027258655", 
          "https://doi.org/10.1038/40657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0302-274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024488928", 
          "https://doi.org/10.1038/nm0302-274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/5517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010598958", 
          "https://doi.org/10.1038/5517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014817268", 
          "https://doi.org/10.1038/sj.gt.3301531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69184-6_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019528391", 
          "https://doi.org/10.1007/978-3-540-69184-6_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cgt.7700158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031345645", 
          "https://doi.org/10.1038/sj.cgt.7700158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/91000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047281881", 
          "https://doi.org/10.1038/91000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cr.7290045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037896923", 
          "https://doi.org/10.1038/sj.cr.7290045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-02-19", 
    "datePublishedReg": "2004-02-19", 
    "description": "Specific activation of apoptosis in tumor cells offers a promising approach for cancer therapy. Induction of apoptosis leads to activation of specific proteases. Two major pathways for caspase activation in mammalian cells have been described. One apoptotic pathway involves members of the tumor necrosis factor family of cytokine receptors (eg death receptor 5 (DR5)). The other pathway is controlled by the Bcl-2 family of proteins. The purpose of this study was to investigate whether increased apoptosis occurs in human glioma cells following infection with a recombinant adenoviral vector encoding the human Bax gene under the control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBax) in combination with an anti-human DR5 monoclonal antibody (TRA-8). Specific overexpression of exogenous Bax protein induced apoptosis and cell death in glioma cell lines, through activation of both caspase-8 and -9, leading to activation of downstream caspase-3. The relative sensitivity to AdVEGFBax for the glioma cell lines was U251MG>U373MG>U87MG>D54MG. The recently characterized TRA-8 monoclonal antibody induces apoptosis of most TRAIL-sensitive tumor cells by specific binding to DR5 receptors on the cellular membrane. TRA-8 induced rapid apoptosis and cell death in glioma cells, but did not demonstrate detectable cytotoxicity of primary normal human astrocytes. The efficiency of TRA-8-induced apoptosis was variable in different glioma cell lines. The relative sensitivity to TRA-8 was U373MG>U87MG>U251MG>D54MG. The combination of TRA-8 treatment and overexpression of Bax overcame TRA-8 resistance of glioma cells in vitro. Cell viability of U251MG cells was 71.1% for TRA-8 (100\u2009ng/ml) alone, 75.9% for AdVEGFBax (5\u2009MOI) alone and 41.1% for their combination as measured by MTS assay. Similar enhanced apoptosis results were obtained for the other glioma cell lines. In vivo studies demonstrated that the combined treatment significantly (P<0.05) suppressed the growth of U251MG xenografts and produced 60% complete tumor regressions without recurrence. These data suggest that the combination of TRA-8 treatment with specific overexpression of Bax using AdVEGFBax may be an effective approach for the treatment of human malignant gliomas.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/sj.gt.3302215", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105638", 
        "issn": [
          "0969-7128", 
          "1476-5462"
        ], 
        "name": "Gene Therapy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "glioma cell lines", 
      "cell lines", 
      "cell death", 
      "human glioma cells", 
      "downstream caspase-3", 
      "human bax gene", 
      "Bcl-2 family", 
      "glioma cells", 
      "TRA-8 treatment", 
      "specific overexpression", 
      "induction of apoptosis", 
      "TRA-8-induced apoptosis", 
      "different glioma cell lines", 
      "primary normal human astrocytes", 
      "mammalian cells", 
      "promoter elements", 
      "caspase activation", 
      "factor family", 
      "apoptotic pathway", 
      "tumor necrosis factor family", 
      "caspase-8", 
      "normal human astrocytes", 
      "cellular membranes", 
      "specific proteases", 
      "cytokine receptors", 
      "apoptosis results", 
      "rapid apoptosis", 
      "TRA-8", 
      "Bax gene", 
      "monoclonal antibodies", 
      "Bax protein", 
      "tumor cells", 
      "exogenous Bax", 
      "overexpression", 
      "caspase-3", 
      "apoptosis", 
      "U251MG cells", 
      "DR5 receptors", 
      "major pathway", 
      "necrosis factor family", 
      "specific activation", 
      "MTS assay", 
      "pathway", 
      "human malignant gliomas", 
      "cell viability", 
      "recombinant adenoviral vector", 
      "protein", 
      "human astrocytes", 
      "cells", 
      "activation", 
      "Bax", 
      "specific binding", 
      "cancer therapy", 
      "TRAIL-sensitive tumor cells", 
      "U87MG", 
      "detectable cytotoxicity", 
      "adenoviral vector", 
      "family", 
      "receptors", 
      "genes", 
      "relative sensitivity", 
      "lines", 
      "protease", 
      "binding", 
      "U251MG", 
      "D54MG", 
      "membrane", 
      "vivo studies", 
      "induction", 
      "assays", 
      "antibodies", 
      "viability", 
      "malignant gliomas", 
      "members", 
      "growth", 
      "death", 
      "cytotoxicity", 
      "astrocytes", 
      "combination", 
      "xenografts", 
      "vector", 
      "promising approach", 
      "resistance", 
      "gliomas", 
      "tumor regression", 
      "study", 
      "treatment", 
      "sensitivity", 
      "infection", 
      "elements", 
      "effective approach", 
      "control", 
      "complete tumor regression", 
      "approach", 
      "data", 
      "results", 
      "efficiency", 
      "therapy", 
      "purpose", 
      "regression", 
      "recurrence"
    ], 
    "name": "Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells", 
    "pagination": "658-667", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013484231"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.gt.3302215"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14973547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.gt.3302215", 
      "https://app.dimensions.ai/details/publication/pub.1013484231"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_379.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/sj.gt.3302215"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3302215'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3302215'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3302215'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3302215'


 

This table displays all metadata directly associated to this object as RDF triples.

345 TRIPLES      22 PREDICATES      165 URIs      146 LITERALS      34 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.gt.3302215 schema:about N0755c84b244d483ba078991f12e7a9c9
2 N14aa0f2c320c493bb9a636797ce9bd2d
3 N1972c00d5ca9410c86cfdd5d80c43b22
4 N1e73d2f3f50642d8b622c76fdcb143cd
5 N1f6c8a11f6b949d3a03aaf580fec67c7
6 N24226e3de52a4ed5831366dc40b54973
7 N29d527ec7d44494bb83675ff31057326
8 N39d6b7ac6a0b4b3786e5a4d1b916e183
9 N3e43f9b54d5545378dbb68b614a52873
10 N4b369ac251b04aa9b2e2d7b1d2d9e87d
11 N5b01b2060c3645a5baf233f15504633d
12 N600338e2e1e04820bef6df76bb24bebc
13 N690d1488f933472aaa1295957d7422c8
14 N755fcdd60fc34f8c8af2cb1b95901748
15 N7eb35f81cf084e2c8c9933888509d97b
16 N852e0c73d0084b48aa7beca059271d2f
17 N8bc94738c18f4c85abca9f081175e1a2
18 N90543bfcd5a24f2ab61bae9c22064f22
19 N9355c85d34064cc0bab941956548a89e
20 Na66a221a561f403fbfad225214fdd03c
21 Nc20e332de7d74812b331f07bf0dbbb26
22 Nd033cf27edcd4012a619ef49da681abb
23 Nd77c4f2c7966437f8ca1dd6fd0d5da3c
24 Ndef13729415f40deadd2e1dd7d995bd0
25 Ne88d16c77f5e426ca24d1c15f1986efd
26 Ned3ca55eade14ee1a8d310aab7635f2a
27 Nf5124f548eeb4ce6897b71ec87a9382d
28 anzsrc-for:06
29 anzsrc-for:0601
30 anzsrc-for:11
31 anzsrc-for:1112
32 schema:author N318b83b9968f424c8d85fe70a7e98ba9
33 schema:citation sg:pub.10.1007/978-3-540-69184-6_3
34 sg:pub.10.1038/35008667
35 sg:pub.10.1038/40657
36 sg:pub.10.1038/5517
37 sg:pub.10.1038/91000
38 sg:pub.10.1038/nm0302-274
39 sg:pub.10.1038/sj.cgt.7700158
40 sg:pub.10.1038/sj.cr.7290045
41 sg:pub.10.1038/sj.gt.3301531
42 schema:datePublished 2004-02-19
43 schema:datePublishedReg 2004-02-19
44 schema:description Specific activation of apoptosis in tumor cells offers a promising approach for cancer therapy. Induction of apoptosis leads to activation of specific proteases. Two major pathways for caspase activation in mammalian cells have been described. One apoptotic pathway involves members of the tumor necrosis factor family of cytokine receptors (eg death receptor 5 (DR5)). The other pathway is controlled by the Bcl-2 family of proteins. The purpose of this study was to investigate whether increased apoptosis occurs in human glioma cells following infection with a recombinant adenoviral vector encoding the human Bax gene under the control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBax) in combination with an anti-human DR5 monoclonal antibody (TRA-8). Specific overexpression of exogenous Bax protein induced apoptosis and cell death in glioma cell lines, through activation of both caspase-8 and -9, leading to activation of downstream caspase-3. The relative sensitivity to AdVEGFBax for the glioma cell lines was U251MG>U373MG>U87MG>D54MG. The recently characterized TRA-8 monoclonal antibody induces apoptosis of most TRAIL-sensitive tumor cells by specific binding to DR5 receptors on the cellular membrane. TRA-8 induced rapid apoptosis and cell death in glioma cells, but did not demonstrate detectable cytotoxicity of primary normal human astrocytes. The efficiency of TRA-8-induced apoptosis was variable in different glioma cell lines. The relative sensitivity to TRA-8 was U373MG>U87MG>U251MG>D54MG. The combination of TRA-8 treatment and overexpression of Bax overcame TRA-8 resistance of glioma cells in vitro. Cell viability of U251MG cells was 71.1% for TRA-8 (100 ng/ml) alone, 75.9% for AdVEGFBax (5 MOI) alone and 41.1% for their combination as measured by MTS assay. Similar enhanced apoptosis results were obtained for the other glioma cell lines. In vivo studies demonstrated that the combined treatment significantly (P<0.05) suppressed the growth of U251MG xenografts and produced 60% complete tumor regressions without recurrence. These data suggest that the combination of TRA-8 treatment with specific overexpression of Bax using AdVEGFBax may be an effective approach for the treatment of human malignant gliomas.
45 schema:genre article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N06797ce812d64b4abde12200a1629df8
49 N88dcb79d426f4ecfa352e54795646245
50 sg:journal.1105638
51 schema:keywords Bax
52 Bax gene
53 Bax protein
54 Bcl-2 family
55 D54MG
56 DR5 receptors
57 MTS assay
58 TRA-8
59 TRA-8 treatment
60 TRA-8-induced apoptosis
61 TRAIL-sensitive tumor cells
62 U251MG
63 U251MG cells
64 U87MG
65 activation
66 adenoviral vector
67 antibodies
68 apoptosis
69 apoptosis results
70 apoptotic pathway
71 approach
72 assays
73 astrocytes
74 binding
75 cancer therapy
76 caspase activation
77 caspase-3
78 caspase-8
79 cell death
80 cell lines
81 cell viability
82 cells
83 cellular membranes
84 combination
85 complete tumor regression
86 control
87 cytokine receptors
88 cytotoxicity
89 data
90 death
91 detectable cytotoxicity
92 different glioma cell lines
93 downstream caspase-3
94 effective approach
95 efficiency
96 elements
97 exogenous Bax
98 factor family
99 family
100 genes
101 glioma cell lines
102 glioma cells
103 gliomas
104 growth
105 human astrocytes
106 human bax gene
107 human glioma cells
108 human malignant gliomas
109 induction
110 induction of apoptosis
111 infection
112 lines
113 major pathway
114 malignant gliomas
115 mammalian cells
116 members
117 membrane
118 monoclonal antibodies
119 necrosis factor family
120 normal human astrocytes
121 overexpression
122 pathway
123 primary normal human astrocytes
124 promising approach
125 promoter elements
126 protease
127 protein
128 purpose
129 rapid apoptosis
130 receptors
131 recombinant adenoviral vector
132 recurrence
133 regression
134 relative sensitivity
135 resistance
136 results
137 sensitivity
138 specific activation
139 specific binding
140 specific overexpression
141 specific proteases
142 study
143 therapy
144 treatment
145 tumor cells
146 tumor necrosis factor family
147 tumor regression
148 vector
149 viability
150 vivo studies
151 xenografts
152 schema:name Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells
153 schema:pagination 658-667
154 schema:productId N35bf908896a84a419a4d05efb0f83c1b
155 N9a4b50e0a6ad40e686435b4661ed02af
156 Nec2a948000fb44eca7a5bce57f75602a
157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013484231
158 https://doi.org/10.1038/sj.gt.3302215
159 schema:sdDatePublished 2022-05-20T07:22
160 schema:sdLicense https://scigraph.springernature.com/explorer/license/
161 schema:sdPublisher N62ba385b4aab4ba8ba192e1907504c90
162 schema:url https://doi.org/10.1038/sj.gt.3302215
163 sgo:license sg:explorer/license/
164 sgo:sdDataset articles
165 rdf:type schema:ScholarlyArticle
166 N06797ce812d64b4abde12200a1629df8 schema:issueNumber 8
167 rdf:type schema:PublicationIssue
168 N0755c84b244d483ba078991f12e7a9c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Adenoviridae
170 rdf:type schema:DefinedTerm
171 N14aa0f2c320c493bb9a636797ce9bd2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Receptors, Tumor Necrosis Factor
173 rdf:type schema:DefinedTerm
174 N1972c00d5ca9410c86cfdd5d80c43b22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Genetic Therapy
176 rdf:type schema:DefinedTerm
177 N1e73d2f3f50642d8b622c76fdcb143cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Cell Line, Tumor
179 rdf:type schema:DefinedTerm
180 N1f6c8a11f6b949d3a03aaf580fec67c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Brain Neoplasms
182 rdf:type schema:DefinedTerm
183 N24226e3de52a4ed5831366dc40b54973 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Promoter Regions, Genetic
185 rdf:type schema:DefinedTerm
186 N29d527ec7d44494bb83675ff31057326 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Caspases
188 rdf:type schema:DefinedTerm
189 N318b83b9968f424c8d85fe70a7e98ba9 rdf:first sg:person.01206020250.68
190 rdf:rest Nd0a7a05f84e44067a6ee0eb43ff7ec0a
191 N35bf908896a84a419a4d05efb0f83c1b schema:name doi
192 schema:value 10.1038/sj.gt.3302215
193 rdf:type schema:PropertyValue
194 N38d647cd55834796a103ac501cd92ef7 rdf:first sg:person.0664616100.38
195 rdf:rest Nd0bea0c01f0c4b6698eaf386d3c1c9cd
196 N39d6b7ac6a0b4b3786e5a4d1b916e183 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Genetic Vectors
198 rdf:type schema:DefinedTerm
199 N3e43f9b54d5545378dbb68b614a52873 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Mice
201 rdf:type schema:DefinedTerm
202 N4b369ac251b04aa9b2e2d7b1d2d9e87d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Proto-Oncogene Proteins
204 rdf:type schema:DefinedTerm
205 N5b01b2060c3645a5baf233f15504633d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Proto-Oncogene Proteins c-bcl-2
207 rdf:type schema:DefinedTerm
208 N5bd617451e9847c88ed4b069df57f0d0 rdf:first sg:person.01051663455.47
209 rdf:rest N38d647cd55834796a103ac501cd92ef7
210 N600338e2e1e04820bef6df76bb24bebc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Female
212 rdf:type schema:DefinedTerm
213 N62ba385b4aab4ba8ba192e1907504c90 schema:name Springer Nature - SN SciGraph project
214 rdf:type schema:Organization
215 N690d1488f933472aaa1295957d7422c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Animals
217 rdf:type schema:DefinedTerm
218 N755fcdd60fc34f8c8af2cb1b95901748 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Blotting, Western
220 rdf:type schema:DefinedTerm
221 N7eb35f81cf084e2c8c9933888509d97b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Gene Expression
223 rdf:type schema:DefinedTerm
224 N852e0c73d0084b48aa7beca059271d2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
225 schema:name Receptors, TNF-Related Apoptosis-Inducing Ligand
226 rdf:type schema:DefinedTerm
227 N88dcb79d426f4ecfa352e54795646245 schema:volumeNumber 11
228 rdf:type schema:PublicationVolume
229 N8bc94738c18f4c85abca9f081175e1a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
230 schema:name Cell Death
231 rdf:type schema:DefinedTerm
232 N90543bfcd5a24f2ab61bae9c22064f22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
233 schema:name Combined Modality Therapy
234 rdf:type schema:DefinedTerm
235 N9355c85d34064cc0bab941956548a89e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
236 schema:name bcl-2-Associated X Protein
237 rdf:type schema:DefinedTerm
238 N9a4b50e0a6ad40e686435b4661ed02af schema:name dimensions_id
239 schema:value pub.1013484231
240 rdf:type schema:PropertyValue
241 Na66a221a561f403fbfad225214fdd03c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
242 schema:name DNA Fragmentation
243 rdf:type schema:DefinedTerm
244 Nc20e332de7d74812b331f07bf0dbbb26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
245 schema:name Vascular Endothelial Growth Factor A
246 rdf:type schema:DefinedTerm
247 Nd033cf27edcd4012a619ef49da681abb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
248 schema:name Glioma
249 rdf:type schema:DefinedTerm
250 Nd0a7a05f84e44067a6ee0eb43ff7ec0a rdf:first sg:person.07463757344.94
251 rdf:rest N5bd617451e9847c88ed4b069df57f0d0
252 Nd0bea0c01f0c4b6698eaf386d3c1c9cd rdf:first sg:person.01137705050.57
253 rdf:rest rdf:nil
254 Nd77c4f2c7966437f8ca1dd6fd0d5da3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
255 schema:name Antibodies, Monoclonal
256 rdf:type schema:DefinedTerm
257 Ndef13729415f40deadd2e1dd7d995bd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
258 schema:name Flow Cytometry
259 rdf:type schema:DefinedTerm
260 Ne88d16c77f5e426ca24d1c15f1986efd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
261 schema:name Mice, Nude
262 rdf:type schema:DefinedTerm
263 Nec2a948000fb44eca7a5bce57f75602a schema:name pubmed_id
264 schema:value 14973547
265 rdf:type schema:PropertyValue
266 Ned3ca55eade14ee1a8d310aab7635f2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
267 schema:name Humans
268 rdf:type schema:DefinedTerm
269 Nf5124f548eeb4ce6897b71ec87a9382d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
270 schema:name Apoptosis
271 rdf:type schema:DefinedTerm
272 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
273 schema:name Biological Sciences
274 rdf:type schema:DefinedTerm
275 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
276 schema:name Biochemistry and Cell Biology
277 rdf:type schema:DefinedTerm
278 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
279 schema:name Medical and Health Sciences
280 rdf:type schema:DefinedTerm
281 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
282 schema:name Oncology and Carcinogenesis
283 rdf:type schema:DefinedTerm
284 sg:journal.1105638 schema:issn 0969-7128
285 1476-5462
286 schema:name Gene Therapy
287 schema:publisher Springer Nature
288 rdf:type schema:Periodical
289 sg:person.01051663455.47 schema:affiliation grid-institutes:grid.265892.2
290 schema:familyName Kaliberova
291 schema:givenName L
292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051663455.47
293 rdf:type schema:Person
294 sg:person.01137705050.57 schema:affiliation grid-institutes:grid.265892.2
295 schema:familyName Buchsbaum
296 schema:givenName D J
297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137705050.57
298 rdf:type schema:Person
299 sg:person.01206020250.68 schema:affiliation grid-institutes:grid.265892.2
300 schema:familyName Kaliberov
301 schema:givenName S
302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206020250.68
303 rdf:type schema:Person
304 sg:person.0664616100.38 schema:affiliation grid-institutes:grid.265892.2
305 schema:familyName Zhou
306 schema:givenName T
307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664616100.38
308 rdf:type schema:Person
309 sg:person.07463757344.94 schema:affiliation grid-institutes:grid.265892.2
310 schema:familyName Stackhouse
311 schema:givenName M A
312 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463757344.94
313 rdf:type schema:Person
314 sg:pub.10.1007/978-3-540-69184-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019528391
315 https://doi.org/10.1007/978-3-540-69184-6_3
316 rdf:type schema:CreativeWork
317 sg:pub.10.1038/35008667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012881410
318 https://doi.org/10.1038/35008667
319 rdf:type schema:CreativeWork
320 sg:pub.10.1038/40657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027258655
321 https://doi.org/10.1038/40657
322 rdf:type schema:CreativeWork
323 sg:pub.10.1038/5517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598958
324 https://doi.org/10.1038/5517
325 rdf:type schema:CreativeWork
326 sg:pub.10.1038/91000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047281881
327 https://doi.org/10.1038/91000
328 rdf:type schema:CreativeWork
329 sg:pub.10.1038/nm0302-274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024488928
330 https://doi.org/10.1038/nm0302-274
331 rdf:type schema:CreativeWork
332 sg:pub.10.1038/sj.cgt.7700158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031345645
333 https://doi.org/10.1038/sj.cgt.7700158
334 rdf:type schema:CreativeWork
335 sg:pub.10.1038/sj.cr.7290045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037896923
336 https://doi.org/10.1038/sj.cr.7290045
337 rdf:type schema:CreativeWork
338 sg:pub.10.1038/sj.gt.3301531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014817268
339 https://doi.org/10.1038/sj.gt.3301531
340 rdf:type schema:CreativeWork
341 grid-institutes:grid.265892.2 schema:alternateName Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
342 Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
343 schema:name Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
344 Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
345 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...