Optimising gene repair strategies in cell culture View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-06

AUTHORS

B J Stevenson, D J Porteous, P Thorpe

ABSTRACT

Gene repair, the precise modification of the genome, offers a number of advantages over replacement gene therapy. In practice, gene targeting strategies are limited by the inefficiency of homologous recombination in mammalian cells. A number of strategies, including RNA-DNA oligonucleotides (RDOs) and short DNA fragments (SDFs), show promise in improving the efficiency of gene correction. We are using GFP as a reporter for gene repair in living cells. A single base substitution was introduced into GFP to create a nonsense mutation (STOP codon, W399X). RDOs and SDFs are used to repair this mutation episomally in transient transfections and restore green fluorescence. The correction efficiency is determined by FACS analysis. SDFs appear to correct GFP W399X in a number of different cell lines (COS7, A549, HT1080, HuH-7), although all at a similar low frequency ( approximately 0.6% of transfected cells). RDOs correct only one of our cell lines significantly (HT1080-RAD51), these cells overexpress the human RAD51 gene; the bacterial RecA homologue. The GFP W399X reporter is a fusion gene with hygromycin (at the 5' end), this has allowed us to make stable cell lines (A549, HT1080) to study genomic correction. Initial studies using our correction molecules show only low efficiencies of genomic repair ( approximately 10(-4)). Polyethylenimine (PEI) is used to deliver RDOs and SDFs into mammalian cells in culture for our study. We have used fluorescently labelled RDOs and SDFs to study the effectiveness of this process. FACS analysis of transfected nuclei implied efficient delivery (>90%) both with SDFs and RDOs. However, confocal fluorescence microscopy suggests that a large proportion of the complexed RDO/SDF appears to remain outside the nucleus (or attached to the nuclear membrane). On the basis of these data we are assessing new delivery methods and factors that may alter recombination status to optimise gene repair. More... »

PAGES

700

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.gt.3301750

DOI

http://dx.doi.org/10.1038/sj.gt.3301750

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003776746

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12032691


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cystic Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Targeting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Site-Directed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Fusion Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevenson", 
        "givenName": "B J", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porteous", 
        "givenName": "D J", 
        "id": "sg:person.012230156744.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230156744.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thorpe", 
        "givenName": "P", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.93.5.2071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002787979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00063030-200115090-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003242443", 
          "https://doi.org/10.2165/00063030-200115090-00006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00063030-200115090-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003242443", 
          "https://doi.org/10.2165/00063030-200115090-00006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.510250626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009121453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mthe.2001.0283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009202036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(01)00328-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009943717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgm.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019288828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.5.1323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019714566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5466.669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019730668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/7.12.1913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025600686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026292705", 
          "https://doi.org/10.1038/sj.gt.3301042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026292705", 
          "https://doi.org/10.1038/sj.gt.3301042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgm.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026879592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3300945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027846715", 
          "https://doi.org/10.1038/sj.gt.3300945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3300945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027846715", 
          "https://doi.org/10.1038/sj.gt.3300945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030044760", 
          "https://doi.org/10.1038/sj.gt.3301476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030044760", 
          "https://doi.org/10.1038/sj.gt.3301476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2001.02407.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037191015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.21.4332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040730547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3300601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043341032", 
          "https://doi.org/10.1038/sj.gt.3300601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3300601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043341032", 
          "https://doi.org/10.1038/sj.gt.3300601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1165/ajrcmb.24.6.4217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044521169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.20.4238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046383039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-4781(01)00296-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047258026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.120.3_suppl.124s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051132926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.120.3_suppl.124s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051132926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mthe.2000.0242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052651163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052794585", 
          "https://doi.org/10.1038/sj.gt.3301414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052794585", 
          "https://doi.org/10.1038/sj.gt.3301414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi9921891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055218649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi9921891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055218649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/104303401300057324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059202130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074871381", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074871387", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082995120", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-06", 
    "datePublishedReg": "2002-06-01", 
    "description": "Gene repair, the precise modification of the genome, offers a number of advantages over replacement gene therapy. In practice, gene targeting strategies are limited by the inefficiency of homologous recombination in mammalian cells. A number of strategies, including RNA-DNA oligonucleotides (RDOs) and short DNA fragments (SDFs), show promise in improving the efficiency of gene correction. We are using GFP as a reporter for gene repair in living cells. A single base substitution was introduced into GFP to create a nonsense mutation (STOP codon, W399X). RDOs and SDFs are used to repair this mutation episomally in transient transfections and restore green fluorescence. The correction efficiency is determined by FACS analysis. SDFs appear to correct GFP W399X in a number of different cell lines (COS7, A549, HT1080, HuH-7), although all at a similar low frequency ( approximately 0.6% of transfected cells). RDOs correct only one of our cell lines significantly (HT1080-RAD51), these cells overexpress the human RAD51 gene; the bacterial RecA homologue. The GFP W399X reporter is a fusion gene with hygromycin (at the 5' end), this has allowed us to make stable cell lines (A549, HT1080) to study genomic correction. Initial studies using our correction molecules show only low efficiencies of genomic repair ( approximately 10(-4)). Polyethylenimine (PEI) is used to deliver RDOs and SDFs into mammalian cells in culture for our study. We have used fluorescently labelled RDOs and SDFs to study the effectiveness of this process. FACS analysis of transfected nuclei implied efficient delivery (>90%) both with SDFs and RDOs. However, confocal fluorescence microscopy suggests that a large proportion of the complexed RDO/SDF appears to remain outside the nucleus (or attached to the nuclear membrane). On the basis of these data we are assessing new delivery methods and factors that may alter recombination status to optimise gene repair.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.gt.3301750", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1105638", 
        "issn": [
          "0969-7128", 
          "1476-5462"
        ], 
        "name": "Gene Therapy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Optimising gene repair strategies in cell culture", 
    "pagination": "700", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11fdb3157a014b25f3e3e7d9aeefeba5f7363a6bab75807c3172298d28224351"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12032691"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9421525"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.gt.3301750"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003776746"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.gt.3301750", 
      "https://app.dimensions.ai/details/publication/pub.1003776746"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54014_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/3301750"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3301750'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3301750'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3301750'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3301750'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      66 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.gt.3301750 schema:about N0c5be6278c8f417a8b5ac8fa5bfd16bc
2 N136b44f8879745b4bb225302a052f0d8
3 N9ff25cf4df2b4653beb90e4017f56374
4 Na6c383fd68ed4787a367534e45d326c4
5 Nb7a05082882c4022bff21bbb4263a0b0
6 Nbfac819122554d9fa9ba995556ab93a8
7 Nc1368c6226f948e081bc1c2a7d1ce257
8 Nd8e46592a09e47648423122f212f7724
9 Nf0152c52e2fd45fcaed69b7dfe9a0ad2
10 Nf4c01c5d03b3465cb6625b7fb375a99d
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N3629ce51c5834fe4a4e8ce30eb95ef82
14 schema:citation sg:pub.10.1038/sj.gt.3300601
15 sg:pub.10.1038/sj.gt.3300945
16 sg:pub.10.1038/sj.gt.3301042
17 sg:pub.10.1038/sj.gt.3301414
18 sg:pub.10.1038/sj.gt.3301476
19 sg:pub.10.2165/00063030-200115090-00006
20 https://app.dimensions.ai/details/publication/pub.1074871381
21 https://app.dimensions.ai/details/publication/pub.1074871387
22 https://app.dimensions.ai/details/publication/pub.1082995120
23 https://doi.org/10.1002/hep.510250626
24 https://doi.org/10.1002/jgm.200
25 https://doi.org/10.1002/jgm.249
26 https://doi.org/10.1006/mthe.2000.0242
27 https://doi.org/10.1006/mthe.2001.0283
28 https://doi.org/10.1016/s0092-8674(01)00328-2
29 https://doi.org/10.1016/s0167-4781(01)00296-2
30 https://doi.org/10.1021/bi9921891
31 https://doi.org/10.1046/j.1365-2958.2001.02407.x
32 https://doi.org/10.1073/pnas.93.5.2071
33 https://doi.org/10.1089/104303401300057324
34 https://doi.org/10.1093/hmg/7.12.1913
35 https://doi.org/10.1093/nar/27.5.1323
36 https://doi.org/10.1093/nar/28.21.4332
37 https://doi.org/10.1093/nar/29.20.4238
38 https://doi.org/10.1126/science.288.5466.669
39 https://doi.org/10.1165/ajrcmb.24.6.4217
40 https://doi.org/10.1378/chest.120.3_suppl.124s
41 schema:datePublished 2002-06
42 schema:datePublishedReg 2002-06-01
43 schema:description Gene repair, the precise modification of the genome, offers a number of advantages over replacement gene therapy. In practice, gene targeting strategies are limited by the inefficiency of homologous recombination in mammalian cells. A number of strategies, including RNA-DNA oligonucleotides (RDOs) and short DNA fragments (SDFs), show promise in improving the efficiency of gene correction. We are using GFP as a reporter for gene repair in living cells. A single base substitution was introduced into GFP to create a nonsense mutation (STOP codon, W399X). RDOs and SDFs are used to repair this mutation episomally in transient transfections and restore green fluorescence. The correction efficiency is determined by FACS analysis. SDFs appear to correct GFP W399X in a number of different cell lines (COS7, A549, HT1080, HuH-7), although all at a similar low frequency ( approximately 0.6% of transfected cells). RDOs correct only one of our cell lines significantly (HT1080-RAD51), these cells overexpress the human RAD51 gene; the bacterial RecA homologue. The GFP W399X reporter is a fusion gene with hygromycin (at the 5' end), this has allowed us to make stable cell lines (A549, HT1080) to study genomic correction. Initial studies using our correction molecules show only low efficiencies of genomic repair ( approximately 10(-4)). Polyethylenimine (PEI) is used to deliver RDOs and SDFs into mammalian cells in culture for our study. We have used fluorescently labelled RDOs and SDFs to study the effectiveness of this process. FACS analysis of transfected nuclei implied efficient delivery (>90%) both with SDFs and RDOs. However, confocal fluorescence microscopy suggests that a large proportion of the complexed RDO/SDF appears to remain outside the nucleus (or attached to the nuclear membrane). On the basis of these data we are assessing new delivery methods and factors that may alter recombination status to optimise gene repair.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N352eec3e4b8b475db803686affdeb1e9
48 N7518373ae86149769d89b854de9441a6
49 sg:journal.1105638
50 schema:name Optimising gene repair strategies in cell culture
51 schema:pagination 700
52 schema:productId N026adcd0c7f04dcb93ae8027c925afd6
53 N114d5c3dab4d42ceb3d498b0fb5b29c5
54 N1e20db13ea45456081a124df6ae6c9a6
55 N38fc527626a34577b7b21837551e423b
56 N9e508110898746c1a8794d1b8e48b22d
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003776746
58 https://doi.org/10.1038/sj.gt.3301750
59 schema:sdDatePublished 2019-04-11T12:15
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nc61c9044986549d8ab3a76cba07f3297
62 schema:url https://www.nature.com/articles/3301750
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N026adcd0c7f04dcb93ae8027c925afd6 schema:name pubmed_id
67 schema:value 12032691
68 rdf:type schema:PropertyValue
69 N0c5be6278c8f417a8b5ac8fa5bfd16bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N114d5c3dab4d42ceb3d498b0fb5b29c5 schema:name doi
73 schema:value 10.1038/sj.gt.3301750
74 rdf:type schema:PropertyValue
75 N136b44f8879745b4bb225302a052f0d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Animals
77 rdf:type schema:DefinedTerm
78 N1e20db13ea45456081a124df6ae6c9a6 schema:name readcube_id
79 schema:value 11fdb3157a014b25f3e3e7d9aeefeba5f7363a6bab75807c3172298d28224351
80 rdf:type schema:PropertyValue
81 N352eec3e4b8b475db803686affdeb1e9 schema:volumeNumber 9
82 rdf:type schema:PublicationVolume
83 N3629ce51c5834fe4a4e8ce30eb95ef82 rdf:first Ned91121b6f01427386ee09b9453bc05f
84 rdf:rest N43a9a2d9ec944f19b8cd62bf8c68b477
85 N38fc527626a34577b7b21837551e423b schema:name nlm_unique_id
86 schema:value 9421525
87 rdf:type schema:PropertyValue
88 N3cd1ce03ccc94d58b5d528d7cfcd90e8 schema:name Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK
89 rdf:type schema:Organization
90 N43a9a2d9ec944f19b8cd62bf8c68b477 rdf:first sg:person.012230156744.42
91 rdf:rest N632712ccffd84240ab13b7dae19a943c
92 N632712ccffd84240ab13b7dae19a943c rdf:first N95c65bc81a2f43459ffd777c7c460559
93 rdf:rest rdf:nil
94 N7216c0443fda4625b713b1ce9c537671 schema:name Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK
95 rdf:type schema:Organization
96 N7518373ae86149769d89b854de9441a6 schema:issueNumber 11
97 rdf:type schema:PublicationIssue
98 N95c65bc81a2f43459ffd777c7c460559 schema:affiliation N7216c0443fda4625b713b1ce9c537671
99 schema:familyName Thorpe
100 schema:givenName P
101 rdf:type schema:Person
102 N9e508110898746c1a8794d1b8e48b22d schema:name dimensions_id
103 schema:value pub.1003776746
104 rdf:type schema:PropertyValue
105 N9ff25cf4df2b4653beb90e4017f56374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Genetic Therapy
107 rdf:type schema:DefinedTerm
108 Na6c383fd68ed4787a367534e45d326c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Recombinant Fusion Proteins
110 rdf:type schema:DefinedTerm
111 Nae8f44a148e041409b2b9c25518b4aed schema:name Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK
112 rdf:type schema:Organization
113 Nb7a05082882c4022bff21bbb4263a0b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Mammals
115 rdf:type schema:DefinedTerm
116 Nbfac819122554d9fa9ba995556ab93a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Cystic Fibrosis
118 rdf:type schema:DefinedTerm
119 Nc1368c6226f948e081bc1c2a7d1ce257 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Cell Line
121 rdf:type schema:DefinedTerm
122 Nc61c9044986549d8ab3a76cba07f3297 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nd8e46592a09e47648423122f212f7724 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Gene Targeting
126 rdf:type schema:DefinedTerm
127 Ned91121b6f01427386ee09b9453bc05f schema:affiliation Nae8f44a148e041409b2b9c25518b4aed
128 schema:familyName Stevenson
129 schema:givenName B J
130 rdf:type schema:Person
131 Nf0152c52e2fd45fcaed69b7dfe9a0ad2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Mutagenesis, Site-Directed
133 rdf:type schema:DefinedTerm
134 Nf4c01c5d03b3465cb6625b7fb375a99d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Plasmids
136 rdf:type schema:DefinedTerm
137 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
138 schema:name Biological Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
141 schema:name Genetics
142 rdf:type schema:DefinedTerm
143 sg:journal.1105638 schema:issn 0969-7128
144 1476-5462
145 schema:name Gene Therapy
146 rdf:type schema:Periodical
147 sg:person.012230156744.42 schema:affiliation N3cd1ce03ccc94d58b5d528d7cfcd90e8
148 schema:familyName Porteous
149 schema:givenName D J
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230156744.42
151 rdf:type schema:Person
152 sg:pub.10.1038/sj.gt.3300601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043341032
153 https://doi.org/10.1038/sj.gt.3300601
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/sj.gt.3300945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027846715
156 https://doi.org/10.1038/sj.gt.3300945
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/sj.gt.3301042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026292705
159 https://doi.org/10.1038/sj.gt.3301042
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/sj.gt.3301414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052794585
162 https://doi.org/10.1038/sj.gt.3301414
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/sj.gt.3301476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030044760
165 https://doi.org/10.1038/sj.gt.3301476
166 rdf:type schema:CreativeWork
167 sg:pub.10.2165/00063030-200115090-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003242443
168 https://doi.org/10.2165/00063030-200115090-00006
169 rdf:type schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1074871381 schema:CreativeWork
171 https://app.dimensions.ai/details/publication/pub.1074871387 schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1082995120 schema:CreativeWork
173 https://doi.org/10.1002/hep.510250626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009121453
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/jgm.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026879592
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/jgm.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019288828
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1006/mthe.2000.0242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052651163
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1006/mthe.2001.0283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009202036
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0092-8674(01)00328-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009943717
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0167-4781(01)00296-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047258026
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/bi9921891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055218649
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1046/j.1365-2958.2001.02407.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037191015
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1073/pnas.93.5.2071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002787979
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1089/104303401300057324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059202130
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/hmg/7.12.1913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025600686
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/nar/27.5.1323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019714566
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/nar/28.21.4332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040730547
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/nar/29.20.4238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046383039
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.288.5466.669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019730668
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1165/ajrcmb.24.6.4217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044521169
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1378/chest.120.3_suppl.124s schema:sameAs https://app.dimensions.ai/details/publication/pub.1051132926
208 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...