Improving electrotransfection efficiency by post-pulse centrifugation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-03

AUTHORS

L H Li, P Ross, S W Hui

ABSTRACT

We have demonstrated that the viability of electrotransfected adherent CHO and suspended NK-L, K-562, L1210 and MC2 cells is improved if pelleting by centrifugation is performed immediately after pulsing. The protection effect on cell viability is cell line- and pellet thickness-dependent. For forming CHO cell pellets, centrifugation force (300-13,000 g) and duration are not crucial; about five to 10 cell layers in the pellet provide the optimal protection effect. NK-L, K-562, L1210 and MC2 cell pellets are optimally formed by centrifugation at 13,000 g in an Eppendorf desktop centrifuge. Pelleting improves the cell viability over the whole range of the NK-L, K-562, L1210 and MC2 cell concentrations studied. When this pelleting method is applied to load CHO cells with FITC-dextran (41,000 MW), not only is the success rate close to 100%, but the growth rate is similar to the control, which is far better than the conventional electroporation method. Furthermore, the transfection efficiency of the five cell lines in pellet is significantly higher than that in suspension. More... »

PAGES

3300828

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.gt.3300828

DOI

http://dx.doi.org/10.1038/sj.gt.3300828

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021914505

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10435086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CHO Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Centrifugation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cricetinae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroporation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunotherapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Killer Cells, Natural", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Phase-Contrast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transfection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "beta-Galactosidase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA", 
            "Biomedical Engineering Department, Hunan Medical University, Changsha, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "L H", 
        "id": "sg:person.0744044330.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744044330.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roswell Park Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.240614.5", 
          "name": [
            "Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ross", 
        "givenName": "P", 
        "id": "sg:person.01202043246.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202043246.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roswell Park Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.240614.5", 
          "name": [
            "Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hui", 
        "givenName": "S W", 
        "id": "sg:person.07733420502.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07733420502.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0006-3495(96)79314-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002665486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80497-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006122535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-4889(91)90149-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006902575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-4889(91)90149-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006902575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-291x(86)91084-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007503848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(90)90222-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013508190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(90)90222-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013508190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80722-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015547398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(89)90429-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016692137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(77)90252-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020590512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(77)90252-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020590512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(96)79249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025671031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80805-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027030236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01871522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027648519", 
          "https://doi.org/10.1007/bf01871522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01871522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027648519", 
          "https://doi.org/10.1007/bf01871522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(91)82115-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037631314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80498-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038405097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(90)82349-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046121495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.88.10.4230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049476006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(87)90275-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050395219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(87)90275-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050395219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/hyb.1988.7.505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059274939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078912514", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1982.tb01257.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081682160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-03", 
    "datePublishedReg": "1999-03-01", 
    "description": "We have demonstrated that the viability of electrotransfected adherent CHO and suspended NK-L, K-562, L1210 and MC2 cells is improved if pelleting by centrifugation is performed immediately after pulsing. The protection effect on cell viability is cell line- and pellet thickness-dependent. For forming CHO cell pellets, centrifugation force (300-13,000 g) and duration are not crucial; about five to 10 cell layers in the pellet provide the optimal protection effect. NK-L, K-562, L1210 and MC2 cell pellets are optimally formed by centrifugation at 13,000 g in an Eppendorf desktop centrifuge. Pelleting improves the cell viability over the whole range of the NK-L, K-562, L1210 and MC2 cell concentrations studied. When this pelleting method is applied to load CHO cells with FITC-dextran (41,000 MW), not only is the success rate close to 100%, but the growth rate is similar to the control, which is far better than the conventional electroporation method. Furthermore, the transfection efficiency of the five cell lines in pellet is significantly higher than that in suspension.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.gt.3300828", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2510070", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1105638", 
        "issn": [
          "0969-7128", 
          "1476-5462"
        ], 
        "name": "Gene Therapy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Improving electrotransfection efficiency by post-pulse centrifugation", 
    "pagination": "3300828", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6867b46ae72d8a4fdeddea51cef56433120ac4934caf5d4eae1bcee18f8a5b6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10435086"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9421525"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.gt.3300828"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021914505"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.gt.3300828", 
      "https://app.dimensions.ai/details/publication/pub.1021914505"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118315_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/3300828"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300828'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300828'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300828'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300828'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      61 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.gt.3300828 schema:about N19fb6993447146c88d9dc69e85a506ab
2 N1f0bf360d0ec4972b9def824672c334e
3 N2974f94442704e7e96c4f9171c1ae4b2
4 N3085fd07cda44206a8c85e0480a9d219
5 N7b39dbf773ec484f8a97714ae67142b3
6 N97fdd191013246d0b885c721faf8ccb6
7 Na1585d3acc37488b8a1d38617116b953
8 Na5012cea519846719891541d1c8b1f30
9 Nabc8d720a09a4feaa2e07958f2e41242
10 Ndebad006a4004bdabee5508f55582b06
11 Ne1562ed1c3b344599d620f9c1d5da996
12 Nea380b4ae3d44953826fcdebbbe483dc
13 Nf2b4c3023ba849fbb09f3537177fda23
14 anzsrc-for:11
15 anzsrc-for:1107
16 schema:author N57fd9f23bfc1469280377b853f6fc7b9
17 schema:citation sg:pub.10.1007/bf01871522
18 https://app.dimensions.ai/details/publication/pub.1078912514
19 https://doi.org/10.1002/j.1460-2075.1982.tb01257.x
20 https://doi.org/10.1016/0003-2697(89)90429-6
21 https://doi.org/10.1016/0005-2736(77)90252-8
22 https://doi.org/10.1016/0005-2736(87)90275-6
23 https://doi.org/10.1016/0005-2736(90)90222-a
24 https://doi.org/10.1016/0006-291x(86)91084-3
25 https://doi.org/10.1016/0167-4889(91)90149-r
26 https://doi.org/10.1016/s0006-3495(90)82349-3
27 https://doi.org/10.1016/s0006-3495(91)82115-4
28 https://doi.org/10.1016/s0006-3495(94)80497-7
29 https://doi.org/10.1016/s0006-3495(94)80498-9
30 https://doi.org/10.1016/s0006-3495(94)80722-2
31 https://doi.org/10.1016/s0006-3495(94)80805-7
32 https://doi.org/10.1016/s0006-3495(96)79249-4
33 https://doi.org/10.1016/s0006-3495(96)79314-1
34 https://doi.org/10.1073/pnas.88.10.4230
35 https://doi.org/10.1089/hyb.1988.7.505
36 schema:datePublished 1999-03
37 schema:datePublishedReg 1999-03-01
38 schema:description We have demonstrated that the viability of electrotransfected adherent CHO and suspended NK-L, K-562, L1210 and MC2 cells is improved if pelleting by centrifugation is performed immediately after pulsing. The protection effect on cell viability is cell line- and pellet thickness-dependent. For forming CHO cell pellets, centrifugation force (300-13,000 g) and duration are not crucial; about five to 10 cell layers in the pellet provide the optimal protection effect. NK-L, K-562, L1210 and MC2 cell pellets are optimally formed by centrifugation at 13,000 g in an Eppendorf desktop centrifuge. Pelleting improves the cell viability over the whole range of the NK-L, K-562, L1210 and MC2 cell concentrations studied. When this pelleting method is applied to load CHO cells with FITC-dextran (41,000 MW), not only is the success rate close to 100%, but the growth rate is similar to the control, which is far better than the conventional electroporation method. Furthermore, the transfection efficiency of the five cell lines in pellet is significantly higher than that in suspension.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N53bbf8e13ba34d528842ef7c66b5fb8e
43 Nbec9f2341af448c4bd7b3630dad53938
44 sg:journal.1105638
45 schema:name Improving electrotransfection efficiency by post-pulse centrifugation
46 schema:pagination 3300828
47 schema:productId N0d160f40565a42a88733110f9c1977b7
48 N3d44629e390e48aaad8c35ae88970dd5
49 N72e032f0906d43399baed0682bd68a46
50 Na8fe912b197c4b399d8fcd74154ea242
51 Nf0a3e236e0e94d4e9dac3a7f6e2cb0d4
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021914505
53 https://doi.org/10.1038/sj.gt.3300828
54 schema:sdDatePublished 2019-04-11T12:04
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N922075da870c4b3db31f79c6021e35c6
57 schema:url http://www.nature.com/articles/3300828
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N02e0683a03eb451dbd75e4071e99f425 rdf:first sg:person.07733420502.64
62 rdf:rest rdf:nil
63 N0d160f40565a42a88733110f9c1977b7 schema:name dimensions_id
64 schema:value pub.1021914505
65 rdf:type schema:PropertyValue
66 N19fb6993447146c88d9dc69e85a506ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name CHO Cells
68 rdf:type schema:DefinedTerm
69 N1f0bf360d0ec4972b9def824672c334e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Centrifugation
71 rdf:type schema:DefinedTerm
72 N2974f94442704e7e96c4f9171c1ae4b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Gene Expression
74 rdf:type schema:DefinedTerm
75 N3085fd07cda44206a8c85e0480a9d219 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Cricetinae
77 rdf:type schema:DefinedTerm
78 N3d44629e390e48aaad8c35ae88970dd5 schema:name doi
79 schema:value 10.1038/sj.gt.3300828
80 rdf:type schema:PropertyValue
81 N53bbf8e13ba34d528842ef7c66b5fb8e schema:volumeNumber 6
82 rdf:type schema:PublicationVolume
83 N57fd9f23bfc1469280377b853f6fc7b9 rdf:first sg:person.0744044330.30
84 rdf:rest Nc1032042b44447069d22ef35fcd16ccc
85 N72e032f0906d43399baed0682bd68a46 schema:name nlm_unique_id
86 schema:value 9421525
87 rdf:type schema:PropertyValue
88 N7b39dbf773ec484f8a97714ae67142b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Electroporation
90 rdf:type schema:DefinedTerm
91 N922075da870c4b3db31f79c6021e35c6 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N97fdd191013246d0b885c721faf8ccb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Killer Cells, Natural
95 rdf:type schema:DefinedTerm
96 Na1585d3acc37488b8a1d38617116b953 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Transfection
98 rdf:type schema:DefinedTerm
99 Na5012cea519846719891541d1c8b1f30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Microscopy, Phase-Contrast
101 rdf:type schema:DefinedTerm
102 Na8fe912b197c4b399d8fcd74154ea242 schema:name readcube_id
103 schema:value 6867b46ae72d8a4fdeddea51cef56433120ac4934caf5d4eae1bcee18f8a5b6a
104 rdf:type schema:PropertyValue
105 Nabc8d720a09a4feaa2e07958f2e41242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name beta-Galactosidase
107 rdf:type schema:DefinedTerm
108 Nbec9f2341af448c4bd7b3630dad53938 schema:issueNumber 3
109 rdf:type schema:PublicationIssue
110 Nc1032042b44447069d22ef35fcd16ccc rdf:first sg:person.01202043246.00
111 rdf:rest N02e0683a03eb451dbd75e4071e99f425
112 Ndebad006a4004bdabee5508f55582b06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Cell Line
114 rdf:type schema:DefinedTerm
115 Ne1562ed1c3b344599d620f9c1d5da996 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Cell Survival
117 rdf:type schema:DefinedTerm
118 Nea380b4ae3d44953826fcdebbbe483dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Immunotherapy
120 rdf:type schema:DefinedTerm
121 Nf0a3e236e0e94d4e9dac3a7f6e2cb0d4 schema:name pubmed_id
122 schema:value 10435086
123 rdf:type schema:PropertyValue
124 Nf2b4c3023ba849fbb09f3537177fda23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Animals
126 rdf:type schema:DefinedTerm
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
131 schema:name Immunology
132 rdf:type schema:DefinedTerm
133 sg:grant.2510070 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.gt.3300828
134 rdf:type schema:MonetaryGrant
135 sg:journal.1105638 schema:issn 0969-7128
136 1476-5462
137 schema:name Gene Therapy
138 rdf:type schema:Periodical
139 sg:person.01202043246.00 schema:affiliation https://www.grid.ac/institutes/grid.240614.5
140 schema:familyName Ross
141 schema:givenName P
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202043246.00
143 rdf:type schema:Person
144 sg:person.0744044330.30 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
145 schema:familyName Li
146 schema:givenName L H
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744044330.30
148 rdf:type schema:Person
149 sg:person.07733420502.64 schema:affiliation https://www.grid.ac/institutes/grid.240614.5
150 schema:familyName Hui
151 schema:givenName S W
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07733420502.64
153 rdf:type schema:Person
154 sg:pub.10.1007/bf01871522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027648519
155 https://doi.org/10.1007/bf01871522
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1078912514 schema:CreativeWork
158 https://doi.org/10.1002/j.1460-2075.1982.tb01257.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1081682160
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0003-2697(89)90429-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016692137
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0005-2736(77)90252-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020590512
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/0005-2736(87)90275-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050395219
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0005-2736(90)90222-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1013508190
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0006-291x(86)91084-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007503848
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0167-4889(91)90149-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1006902575
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0006-3495(90)82349-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046121495
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0006-3495(91)82115-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037631314
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0006-3495(94)80497-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122535
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0006-3495(94)80498-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038405097
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0006-3495(94)80722-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015547398
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0006-3495(94)80805-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027030236
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0006-3495(96)79249-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025671031
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0006-3495(96)79314-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002665486
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.88.10.4230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049476006
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1089/hyb.1988.7.505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059274939
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
193 schema:name Biomedical Engineering Department, Hunan Medical University, Changsha, PR China
194 Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.240614.5 schema:alternateName Roswell Park Cancer Institute
197 schema:name Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...