Improving electrotransfection efficiency by post-pulse centrifugation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-03

AUTHORS

L H Li, P Ross, S W Hui

ABSTRACT

We have demonstrated that the viability of electrotransfected adherent CHO and suspended NK-L, K-562, L1210 and MC2 cells is improved if pelleting by centrifugation is performed immediately after pulsing. The protection effect on cell viability is cell line- and pellet thickness-dependent. For forming CHO cell pellets, centrifugation force (300-13,000 g) and duration are not crucial; about five to 10 cell layers in the pellet provide the optimal protection effect. NK-L, K-562, L1210 and MC2 cell pellets are optimally formed by centrifugation at 13,000 g in an Eppendorf desktop centrifuge. Pelleting improves the cell viability over the whole range of the NK-L, K-562, L1210 and MC2 cell concentrations studied. When this pelleting method is applied to load CHO cells with FITC-dextran (41,000 MW), not only is the success rate close to 100%, but the growth rate is similar to the control, which is far better than the conventional electroporation method. Furthermore, the transfection efficiency of the five cell lines in pellet is significantly higher than that in suspension. More... »

PAGES

3300828

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.gt.3300828

DOI

http://dx.doi.org/10.1038/sj.gt.3300828

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021914505

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10435086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CHO Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Centrifugation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cricetinae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroporation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunotherapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Killer Cells, Natural", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Phase-Contrast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transfection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "beta-Galactosidase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA", 
            "Biomedical Engineering Department, Hunan Medical University, Changsha, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "L H", 
        "id": "sg:person.0744044330.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744044330.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roswell Park Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.240614.5", 
          "name": [
            "Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ross", 
        "givenName": "P", 
        "id": "sg:person.01202043246.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202043246.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roswell Park Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.240614.5", 
          "name": [
            "Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hui", 
        "givenName": "S W", 
        "id": "sg:person.07733420502.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07733420502.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0006-3495(96)79314-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002665486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80497-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006122535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-4889(91)90149-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006902575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-4889(91)90149-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006902575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-291x(86)91084-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007503848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(90)90222-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013508190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(90)90222-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013508190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80722-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015547398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(89)90429-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016692137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(77)90252-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020590512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(77)90252-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020590512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(96)79249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025671031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80805-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027030236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01871522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027648519", 
          "https://doi.org/10.1007/bf01871522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01871522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027648519", 
          "https://doi.org/10.1007/bf01871522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(91)82115-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037631314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80498-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038405097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(90)82349-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046121495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.88.10.4230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049476006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(87)90275-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050395219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(87)90275-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050395219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/hyb.1988.7.505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059274939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078912514", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1982.tb01257.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081682160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-03", 
    "datePublishedReg": "1999-03-01", 
    "description": "We have demonstrated that the viability of electrotransfected adherent CHO and suspended NK-L, K-562, L1210 and MC2 cells is improved if pelleting by centrifugation is performed immediately after pulsing. The protection effect on cell viability is cell line- and pellet thickness-dependent. For forming CHO cell pellets, centrifugation force (300-13,000 g) and duration are not crucial; about five to 10 cell layers in the pellet provide the optimal protection effect. NK-L, K-562, L1210 and MC2 cell pellets are optimally formed by centrifugation at 13,000 g in an Eppendorf desktop centrifuge. Pelleting improves the cell viability over the whole range of the NK-L, K-562, L1210 and MC2 cell concentrations studied. When this pelleting method is applied to load CHO cells with FITC-dextran (41,000 MW), not only is the success rate close to 100%, but the growth rate is similar to the control, which is far better than the conventional electroporation method. Furthermore, the transfection efficiency of the five cell lines in pellet is significantly higher than that in suspension.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.gt.3300828", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2510070", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1105638", 
        "issn": [
          "0969-7128", 
          "1476-5462"
        ], 
        "name": "Gene Therapy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Improving electrotransfection efficiency by post-pulse centrifugation", 
    "pagination": "3300828", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6867b46ae72d8a4fdeddea51cef56433120ac4934caf5d4eae1bcee18f8a5b6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10435086"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9421525"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.gt.3300828"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021914505"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.gt.3300828", 
      "https://app.dimensions.ai/details/publication/pub.1021914505"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118315_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/3300828"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300828'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300828'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300828'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300828'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      61 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.gt.3300828 schema:about N0245ab5455d442c5b9c34d234fd9abf2
2 N1553ca007e40465a8716ae80e6c02172
3 N22ca972a4d5c425f820a96291ebda391
4 N247b2205677c4f06a8d88ce4e6fdee2e
5 N4a96e86f8e584e39b753381c2edbd251
6 N6b943ab9e7fd452f95158f37beee635e
7 N7669688fe26947c2bcafb0c7ee59b517
8 N8fb553ca6a1549cf860a7e9ad26b2259
9 Nb14654947ddc4bfe84cd46228ae4e3d7
10 Ncc7151aafc23468093c0d6088e1662e5
11 Nd8202d3d547048cba864db4fcd6e1aec
12 Nda7f9a9f6cda4bfd8dfc7a0d7c632c41
13 Neb4d5b21c52742b2af3b3656507d65c2
14 anzsrc-for:11
15 anzsrc-for:1107
16 schema:author Nb2b807f9b2244d51a68e9cf273bb1b9b
17 schema:citation sg:pub.10.1007/bf01871522
18 https://app.dimensions.ai/details/publication/pub.1078912514
19 https://doi.org/10.1002/j.1460-2075.1982.tb01257.x
20 https://doi.org/10.1016/0003-2697(89)90429-6
21 https://doi.org/10.1016/0005-2736(77)90252-8
22 https://doi.org/10.1016/0005-2736(87)90275-6
23 https://doi.org/10.1016/0005-2736(90)90222-a
24 https://doi.org/10.1016/0006-291x(86)91084-3
25 https://doi.org/10.1016/0167-4889(91)90149-r
26 https://doi.org/10.1016/s0006-3495(90)82349-3
27 https://doi.org/10.1016/s0006-3495(91)82115-4
28 https://doi.org/10.1016/s0006-3495(94)80497-7
29 https://doi.org/10.1016/s0006-3495(94)80498-9
30 https://doi.org/10.1016/s0006-3495(94)80722-2
31 https://doi.org/10.1016/s0006-3495(94)80805-7
32 https://doi.org/10.1016/s0006-3495(96)79249-4
33 https://doi.org/10.1016/s0006-3495(96)79314-1
34 https://doi.org/10.1073/pnas.88.10.4230
35 https://doi.org/10.1089/hyb.1988.7.505
36 schema:datePublished 1999-03
37 schema:datePublishedReg 1999-03-01
38 schema:description We have demonstrated that the viability of electrotransfected adherent CHO and suspended NK-L, K-562, L1210 and MC2 cells is improved if pelleting by centrifugation is performed immediately after pulsing. The protection effect on cell viability is cell line- and pellet thickness-dependent. For forming CHO cell pellets, centrifugation force (300-13,000 g) and duration are not crucial; about five to 10 cell layers in the pellet provide the optimal protection effect. NK-L, K-562, L1210 and MC2 cell pellets are optimally formed by centrifugation at 13,000 g in an Eppendorf desktop centrifuge. Pelleting improves the cell viability over the whole range of the NK-L, K-562, L1210 and MC2 cell concentrations studied. When this pelleting method is applied to load CHO cells with FITC-dextran (41,000 MW), not only is the success rate close to 100%, but the growth rate is similar to the control, which is far better than the conventional electroporation method. Furthermore, the transfection efficiency of the five cell lines in pellet is significantly higher than that in suspension.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N934da703ffde4dbfbc5932651dfa777c
43 Nf32ea67cb8a441a3bdc667abdeaab976
44 sg:journal.1105638
45 schema:name Improving electrotransfection efficiency by post-pulse centrifugation
46 schema:pagination 3300828
47 schema:productId N10325c8187d24df1979a6c6af314000a
48 N3ed85438b8b7450dbefbc02f19994697
49 N6d1797322d044b4589995034e94afd10
50 N86dc1f18a514417fbc2b32bac054a82f
51 Nf5b6460126db4da4bc84c03b0e0260c2
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021914505
53 https://doi.org/10.1038/sj.gt.3300828
54 schema:sdDatePublished 2019-04-11T12:04
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N1d32a95128c44ddc819e29ccba48db8b
57 schema:url http://www.nature.com/articles/3300828
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0245ab5455d442c5b9c34d234fd9abf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Transfection
63 rdf:type schema:DefinedTerm
64 N10325c8187d24df1979a6c6af314000a schema:name dimensions_id
65 schema:value pub.1021914505
66 rdf:type schema:PropertyValue
67 N1553ca007e40465a8716ae80e6c02172 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Killer Cells, Natural
69 rdf:type schema:DefinedTerm
70 N1d32a95128c44ddc819e29ccba48db8b schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N22ca972a4d5c425f820a96291ebda391 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Cell Survival
74 rdf:type schema:DefinedTerm
75 N247b2205677c4f06a8d88ce4e6fdee2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name CHO Cells
77 rdf:type schema:DefinedTerm
78 N3ed85438b8b7450dbefbc02f19994697 schema:name readcube_id
79 schema:value 6867b46ae72d8a4fdeddea51cef56433120ac4934caf5d4eae1bcee18f8a5b6a
80 rdf:type schema:PropertyValue
81 N424f9f7222bb407aba583265a226afb5 rdf:first sg:person.07733420502.64
82 rdf:rest rdf:nil
83 N4a96e86f8e584e39b753381c2edbd251 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Immunotherapy
85 rdf:type schema:DefinedTerm
86 N6b943ab9e7fd452f95158f37beee635e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Cricetinae
88 rdf:type schema:DefinedTerm
89 N6d1797322d044b4589995034e94afd10 schema:name doi
90 schema:value 10.1038/sj.gt.3300828
91 rdf:type schema:PropertyValue
92 N7669688fe26947c2bcafb0c7ee59b517 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name beta-Galactosidase
94 rdf:type schema:DefinedTerm
95 N79d3436951bc48d7abdbe7c96bcfc612 rdf:first sg:person.01202043246.00
96 rdf:rest N424f9f7222bb407aba583265a226afb5
97 N86dc1f18a514417fbc2b32bac054a82f schema:name nlm_unique_id
98 schema:value 9421525
99 rdf:type schema:PropertyValue
100 N8fb553ca6a1549cf860a7e9ad26b2259 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Gene Expression
102 rdf:type schema:DefinedTerm
103 N934da703ffde4dbfbc5932651dfa777c schema:volumeNumber 6
104 rdf:type schema:PublicationVolume
105 Nb14654947ddc4bfe84cd46228ae4e3d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Cell Line
107 rdf:type schema:DefinedTerm
108 Nb2b807f9b2244d51a68e9cf273bb1b9b rdf:first sg:person.0744044330.30
109 rdf:rest N79d3436951bc48d7abdbe7c96bcfc612
110 Ncc7151aafc23468093c0d6088e1662e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Microscopy, Phase-Contrast
112 rdf:type schema:DefinedTerm
113 Nd8202d3d547048cba864db4fcd6e1aec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Animals
115 rdf:type schema:DefinedTerm
116 Nda7f9a9f6cda4bfd8dfc7a0d7c632c41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Electroporation
118 rdf:type schema:DefinedTerm
119 Neb4d5b21c52742b2af3b3656507d65c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Centrifugation
121 rdf:type schema:DefinedTerm
122 Nf32ea67cb8a441a3bdc667abdeaab976 schema:issueNumber 3
123 rdf:type schema:PublicationIssue
124 Nf5b6460126db4da4bc84c03b0e0260c2 schema:name pubmed_id
125 schema:value 10435086
126 rdf:type schema:PropertyValue
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
131 schema:name Immunology
132 rdf:type schema:DefinedTerm
133 sg:grant.2510070 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.gt.3300828
134 rdf:type schema:MonetaryGrant
135 sg:journal.1105638 schema:issn 0969-7128
136 1476-5462
137 schema:name Gene Therapy
138 rdf:type schema:Periodical
139 sg:person.01202043246.00 schema:affiliation https://www.grid.ac/institutes/grid.240614.5
140 schema:familyName Ross
141 schema:givenName P
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202043246.00
143 rdf:type schema:Person
144 sg:person.0744044330.30 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
145 schema:familyName Li
146 schema:givenName L H
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744044330.30
148 rdf:type schema:Person
149 sg:person.07733420502.64 schema:affiliation https://www.grid.ac/institutes/grid.240614.5
150 schema:familyName Hui
151 schema:givenName S W
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07733420502.64
153 rdf:type schema:Person
154 sg:pub.10.1007/bf01871522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027648519
155 https://doi.org/10.1007/bf01871522
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1078912514 schema:CreativeWork
158 https://doi.org/10.1002/j.1460-2075.1982.tb01257.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1081682160
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0003-2697(89)90429-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016692137
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0005-2736(77)90252-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020590512
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/0005-2736(87)90275-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050395219
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0005-2736(90)90222-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1013508190
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0006-291x(86)91084-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007503848
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0167-4889(91)90149-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1006902575
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0006-3495(90)82349-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046121495
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0006-3495(91)82115-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037631314
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0006-3495(94)80497-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122535
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0006-3495(94)80498-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038405097
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0006-3495(94)80722-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015547398
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0006-3495(94)80805-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027030236
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0006-3495(96)79249-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025671031
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0006-3495(96)79314-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002665486
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.88.10.4230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049476006
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1089/hyb.1988.7.505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059274939
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
193 schema:name Biomedical Engineering Department, Hunan Medical University, Changsha, PR China
194 Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.240614.5 schema:alternateName Roswell Park Cancer Institute
197 schema:name Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, NY, USA
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...