Therapeutic gene targeting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-02-01

AUTHORS

RJ Yáñez, ACG Porter

ABSTRACT

Gene targeting is the use of homologous recombination to make defined alterations to the genome. One of the possible outcomes of gene targeting is the accurate correction of genetic defects, and this would make it the ideal method of gene therapy for single gene disorders. While gene targeting has been achieved both in human cell lines and in nontransformed, primary human cells, its low efficiency has been a major limitation to its therapeutic potential. Gene therapy by in vivo gene targeting is therefore impractical without dramatic improvements in targeting efficiency. Ex vivo approaches might more realistically be considered, but would benefit from progress in the isolation and growth of somatic stem cells and improvements in targeting efficiency. We provide here a brief review of the challenges of gene therapy by gene targeting. This is followed by a critical overview of recent developments in gene targeting techniques, and in our understanding of the underlying processes of homologous and nonhomologous recombination. More... »

PAGES

149-159

References to SciGraph publications

  • 1992-12. Targeted breakage of a human chromosome mediated by cloned human telomeric DNA in NATURE GENETICS
  • 1993-06. Mismatch recognition in chromosomal interactions and speciation in CHROMOSOMA
  • 1989-03. Production of chimaeric mice containing embryonic stem (ES) cells carrying a homoeobox Hox 1.1 allele mutated by homologous recombination in NATURE
  • 1993-07. Targeting vector configuration and method of gene transfer influence targeted correction of theAPRT gene in Chinese hamster ovary cells in SOMATIC CELL AND MOLECULAR GENETICS
  • 1996-11. PCR-based gene targeting of the inducible nitric oxide synthase (NOS2) locus in murine ES cells, a new and more cost-effective approach in TRANSGENIC RESEARCH
  • 1985-09. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination in NATURE
  • 1997-05. A sense-abl response? in NATURE
  • 1997-05. Interaction between ATM protein and c-Abl in response to DNA damage in NATURE
  • 1997-07. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells in NATURE
  • 1997-04. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2 in NATURE
  • 1994-01. Gene targeting in normal somatic cells: inactivation of the interferon–γ receptor in myoblasts in NATURE GENETICS
  • 1994-03. Gene conversion in the chicken immunoglobulin locus: A paradigm of homologous recombination in higher eukaryotes in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 1996-03. RNA facilitates RecA-mediated DNA pairing and strand transfer between molecules bearing limited regions of homology in MOLECULAR GENETICS AND GENOMICS
  • 1996-02. Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids in NATURE GENETICS
  • 1997-09-18. Gene therapy - promises, problems and prospects in NATURE
  • 1997-07-01. Efficient gene targeting in mouse embryonic stem cells in GENE THERAPY
  • 1997-04. Functional interaction between DNA-PK and c-Abl in response to DNA damage in NATURE
  • 1993-07. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA in NATURE GENETICS
  • Journal

    TITLE

    Gene Therapy

    ISSUE

    2

    VOLUME

    5

    Related Patents

  • Methods And Compositions For Targeted Cleavage And Recombination
  • Targeted Gene Modification By Parvoviral Vectors
  • Retroviral Vector With Mini-Promoter Cassette
  • Crispr-Based Genome Modification And Regulation
  • Targeted Chromosomal Mutagenasis Using Zinc Finger Nucleases
  • Methods And Compositions For Targeted Cleavage And Recombination
  • Between A Dna Sequence And Chromosomal Dna In A Cell Promoted By Agents Which Enhance Homologous Recombination And Inhibit Non-Homologous End Joining And In Close Proximity To The Dna Sequence At The Target Site; Use In Gene Therapy
  • Knockout Mouse For The Tumor Suppressor Gene Anx7
  • Methods And Compostions For Targeted Genomic Deletion
  • Targeted Chromosomal Mutagenesis Using Zinc Finger Nucleases
  • Regulation Of Endogenous Gene Expression In Cells Using Zinc Finger Proteins
  • Method For Treating Oncological Diseases
  • Use Of Chimeric Nucleases To Stimulate Gene Targeting
  • Methods And Compositions For Targeted Genomic Deletion
  • Oligonucleotide-Directed Repair Or Alteration Of Genetic Information
  • Crispr-Based Genome Modification And Regulation
  • Ng2/Hm Proteoglycan-Binding Peptides That Home To Angiogenic Vasculature And Related Methods
  • Methods And Compositions For Targeted Gene Modification
  • Method Of Inactivating A Glucocorticoid Receptor Gene In An Isolated Cell
  • Humanized Monoclonal Antibodies From A Transgenic Rat
  • Use Of Chimeric Nucleases To Stimulate Gene Targeting
  • Zinc Finger Nuclease-Mediated Homologous Recombination
  • Targeted Gene Modification By Parvoviral Vectors
  • Algorithm For Modification Of Somatic Cancer Evolution
  • Gene Targeting Vector, And Method For Using Same
  • Isolated Human Cell With An Inactivated Glucocorticoid Receptor Gene
  • Compositions Comprising Genome Segments And Methods Of Using The Same
  • Zinc Finger Proteins And Method For Inactivating A Dhfr Gene In A Chinese Hamster Ovary Cell
  • Targeted Nucleic Acid Sequence Alteration Using Cells And Cell-Free Extracts With Altered Levels Or Activities Of A Protein From The Rad52 Epistasis Group, The Mismatch Repair Group And/Or The Excision Repair Group
  • Targeted Chromosomal Genomic Alterations With Modified Single Stranded Oligonucleotides
  • Targeted Deletion Of Cellular Dna Sequences
  • Repressing Endogenous Ccr5 Gene Expression In Cells Using Engineered Zinc Finger Proteins
  • Targeted Gene Modification By Parvoviral Vectors
  • Targeted Integration And Expression On Exogenous Nucleic Acid Sequences
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/sj.gt.3300601

    DOI

    http://dx.doi.org/10.1038/sj.gt.3300601

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043341032

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9578833


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adenoviridae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Targeting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Therapy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombination, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cells", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, W12 0NN, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.413629.b", 
              "name": [
                "Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, W12 0NN, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Y\u00e1\u00f1ez", 
            "givenName": "RJ", 
            "id": "sg:person.0701531676.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701531676.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, W12 0NN, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.413629.b", 
              "name": [
                "Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, W12 0NN, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Porter", 
            "givenName": "ACG", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/387450a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001988850", 
              "https://doi.org/10.1038/387450a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0793-239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011529981", 
              "https://doi.org/10.1038/ng0793-239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1292-283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011756318", 
              "https://doi.org/10.1038/ng1292-283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0296-174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017853247", 
              "https://doi.org/10.1038/ng0296-174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/386804a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022615608", 
              "https://doi.org/10.1038/386804a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/387520a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029483387", 
              "https://doi.org/10.1038/387520a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/38410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048288589", 
              "https://doi.org/10.1038/38410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01924010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000337247", 
              "https://doi.org/10.1007/bf01924010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01980206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022699927", 
              "https://doi.org/10.1007/bf01980206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02174450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001862034", 
              "https://doi.org/10.1007/bf02174450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046060918", 
              "https://doi.org/10.1007/bf01232748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/41358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023520765", 
              "https://doi.org/10.1038/41358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338150a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019082387", 
              "https://doi.org/10.1038/338150a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00360400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000577159", 
              "https://doi.org/10.1007/bf00360400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/386732a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008042972", 
              "https://doi.org/10.1038/386732a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3300457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003072328", 
              "https://doi.org/10.1038/sj.gt.3300457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/317230a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005647127", 
              "https://doi.org/10.1038/317230a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0194-90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024528923", 
              "https://doi.org/10.1038/ng0194-90"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-02-01", 
        "datePublishedReg": "1998-02-01", 
        "description": "Gene targeting is the use of homologous recombination to make defined alterations to the genome. One of the possible outcomes of gene targeting is the accurate correction of genetic defects, and this would make it the ideal method of gene therapy for single gene disorders. While gene targeting has been achieved both in human cell lines and in nontransformed, primary human cells, its low efficiency has been a major limitation to its therapeutic potential. Gene therapy by in vivo gene targeting is therefore impractical without dramatic improvements in targeting efficiency. Ex vivo approaches might more realistically be considered, but would benefit from progress in the isolation and growth of somatic stem cells and improvements in targeting efficiency. We provide here a brief review of the challenges of gene therapy by gene targeting. This is followed by a critical overview of recent developments in gene targeting techniques, and in our understanding of the underlying processes of homologous and nonhomologous recombination.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/sj.gt.3300601", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1105638", 
            "issn": [
              "0969-7128", 
              "1476-5462"
            ], 
            "name": "Gene Therapy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "gene therapy", 
          "gene targeting", 
          "vivo gene targeting", 
          "somatic stem cells", 
          "stem cells", 
          "low efficiency", 
          "homologous recombination", 
          "targeting", 
          "efficiency", 
          "recent developments", 
          "primary human cells", 
          "recombination", 
          "major limitation", 
          "single gene disorders", 
          "ideal method", 
          "human cells", 
          "dramatic improvement", 
          "critical overview", 
          "nonhomologous recombination", 
          "human cell lines", 
          "gene disorders", 
          "therapeutic potential", 
          "improvement", 
          "cells", 
          "technique", 
          "ex", 
          "challenges", 
          "potential", 
          "progress", 
          "cell lines", 
          "isolation", 
          "limitations", 
          "overview", 
          "method", 
          "defects", 
          "brief review", 
          "growth", 
          "genetic defects", 
          "genome", 
          "process", 
          "approach", 
          "therapy", 
          "development", 
          "use", 
          "lines", 
          "genes", 
          "accurate correction", 
          "review", 
          "correction", 
          "understanding", 
          "alterations", 
          "disorders", 
          "possible outcomes", 
          "outcomes"
        ], 
        "name": "Therapeutic gene targeting", 
        "pagination": "149-159", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043341032"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/sj.gt.3300601"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9578833"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/sj.gt.3300601", 
          "https://app.dimensions.ai/details/publication/pub.1043341032"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_267.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/sj.gt.3300601"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300601'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300601'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300601'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.gt.3300601'


     

    This table displays all metadata directly associated to this object as RDF triples.

    229 TRIPLES      21 PREDICATES      106 URIs      80 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/sj.gt.3300601 schema:about N0f7dcc5c3b9e401fabc0e7412ad23a05
    2 N1a0d086c11d245d092441b9d2fffcdef
    3 N3fae865c0af44c15acd349b2342609fb
    4 N6c88e02b83b54b53b3f92428316e2e72
    5 N872e1c2410184211b5968ae628015226
    6 N9b22e76d8baf432bbba53c480bbb118d
    7 Nb395a63f2a7b43ab90c70111d87466d1
    8 Nc2ed2c2e78584894a45ba0e296139839
    9 Nd822f0c9a9b44319b7fa51af22472653
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author Ne943e76bb9624ecd861fe738f9858460
    13 schema:citation sg:pub.10.1007/bf00360400
    14 sg:pub.10.1007/bf01232748
    15 sg:pub.10.1007/bf01924010
    16 sg:pub.10.1007/bf01980206
    17 sg:pub.10.1007/bf02174450
    18 sg:pub.10.1038/317230a0
    19 sg:pub.10.1038/338150a0
    20 sg:pub.10.1038/38410
    21 sg:pub.10.1038/386732a0
    22 sg:pub.10.1038/386804a0
    23 sg:pub.10.1038/387450a0
    24 sg:pub.10.1038/387520a0
    25 sg:pub.10.1038/41358
    26 sg:pub.10.1038/ng0194-90
    27 sg:pub.10.1038/ng0296-174
    28 sg:pub.10.1038/ng0793-239
    29 sg:pub.10.1038/ng1292-283
    30 sg:pub.10.1038/sj.gt.3300457
    31 schema:datePublished 1998-02-01
    32 schema:datePublishedReg 1998-02-01
    33 schema:description Gene targeting is the use of homologous recombination to make defined alterations to the genome. One of the possible outcomes of gene targeting is the accurate correction of genetic defects, and this would make it the ideal method of gene therapy for single gene disorders. While gene targeting has been achieved both in human cell lines and in nontransformed, primary human cells, its low efficiency has been a major limitation to its therapeutic potential. Gene therapy by in vivo gene targeting is therefore impractical without dramatic improvements in targeting efficiency. Ex vivo approaches might more realistically be considered, but would benefit from progress in the isolation and growth of somatic stem cells and improvements in targeting efficiency. We provide here a brief review of the challenges of gene therapy by gene targeting. This is followed by a critical overview of recent developments in gene targeting techniques, and in our understanding of the underlying processes of homologous and nonhomologous recombination.
    34 schema:genre article
    35 schema:isAccessibleForFree false
    36 schema:isPartOf N013c7960d4a54c14b878e07a3a0f3024
    37 N568ff1a58737403596fbe3f8bc56a19e
    38 sg:journal.1105638
    39 schema:keywords accurate correction
    40 alterations
    41 approach
    42 brief review
    43 cell lines
    44 cells
    45 challenges
    46 correction
    47 critical overview
    48 defects
    49 development
    50 disorders
    51 dramatic improvement
    52 efficiency
    53 ex
    54 gene disorders
    55 gene targeting
    56 gene therapy
    57 genes
    58 genetic defects
    59 genome
    60 growth
    61 homologous recombination
    62 human cell lines
    63 human cells
    64 ideal method
    65 improvement
    66 isolation
    67 limitations
    68 lines
    69 low efficiency
    70 major limitation
    71 method
    72 nonhomologous recombination
    73 outcomes
    74 overview
    75 possible outcomes
    76 potential
    77 primary human cells
    78 process
    79 progress
    80 recent developments
    81 recombination
    82 review
    83 single gene disorders
    84 somatic stem cells
    85 stem cells
    86 targeting
    87 technique
    88 therapeutic potential
    89 therapy
    90 understanding
    91 use
    92 vivo gene targeting
    93 schema:name Therapeutic gene targeting
    94 schema:pagination 149-159
    95 schema:productId N52e7b71f8664424ab22d9855a4b02e6b
    96 N69ec0c78baed429192cf8f9ae7a5db0d
    97 Nb0ad6fa2c5974902b52d87a2d8744b4a
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043341032
    99 https://doi.org/10.1038/sj.gt.3300601
    100 schema:sdDatePublished 2022-11-24T20:47
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N00ed01b0948c4cfdb6408f65819a7d95
    103 schema:url https://doi.org/10.1038/sj.gt.3300601
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N00ed01b0948c4cfdb6408f65819a7d95 schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N013c7960d4a54c14b878e07a3a0f3024 schema:issueNumber 2
    110 rdf:type schema:PublicationIssue
    111 N0f7dcc5c3b9e401fabc0e7412ad23a05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Humans
    113 rdf:type schema:DefinedTerm
    114 N1a0d086c11d245d092441b9d2fffcdef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Genetic Vectors
    116 rdf:type schema:DefinedTerm
    117 N3fae865c0af44c15acd349b2342609fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Animals
    119 rdf:type schema:DefinedTerm
    120 N52e7b71f8664424ab22d9855a4b02e6b schema:name pubmed_id
    121 schema:value 9578833
    122 rdf:type schema:PropertyValue
    123 N568ff1a58737403596fbe3f8bc56a19e schema:volumeNumber 5
    124 rdf:type schema:PublicationVolume
    125 N69ec0c78baed429192cf8f9ae7a5db0d schema:name doi
    126 schema:value 10.1038/sj.gt.3300601
    127 rdf:type schema:PropertyValue
    128 N6c88e02b83b54b53b3f92428316e2e72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name DNA-Binding Proteins
    130 rdf:type schema:DefinedTerm
    131 N872e1c2410184211b5968ae628015226 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Recombination, Genetic
    133 rdf:type schema:DefinedTerm
    134 N934afb0eb2bf4111aa26f04d43d61f73 schema:affiliation grid-institutes:grid.413629.b
    135 schema:familyName Porter
    136 schema:givenName ACG
    137 rdf:type schema:Person
    138 N9b22e76d8baf432bbba53c480bbb118d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Gene Targeting
    140 rdf:type schema:DefinedTerm
    141 Nb0ad6fa2c5974902b52d87a2d8744b4a schema:name dimensions_id
    142 schema:value pub.1043341032
    143 rdf:type schema:PropertyValue
    144 Nb1165ca5fdfa41dfa0e5045aabe40d3c rdf:first N934afb0eb2bf4111aa26f04d43d61f73
    145 rdf:rest rdf:nil
    146 Nb395a63f2a7b43ab90c70111d87466d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Stem Cells
    148 rdf:type schema:DefinedTerm
    149 Nc2ed2c2e78584894a45ba0e296139839 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Genetic Therapy
    151 rdf:type schema:DefinedTerm
    152 Nd822f0c9a9b44319b7fa51af22472653 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Adenoviridae
    154 rdf:type schema:DefinedTerm
    155 Ne943e76bb9624ecd861fe738f9858460 rdf:first sg:person.0701531676.33
    156 rdf:rest Nb1165ca5fdfa41dfa0e5045aabe40d3c
    157 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Biological Sciences
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Genetics
    162 rdf:type schema:DefinedTerm
    163 sg:journal.1105638 schema:issn 0969-7128
    164 1476-5462
    165 schema:name Gene Therapy
    166 schema:publisher Springer Nature
    167 rdf:type schema:Periodical
    168 sg:person.0701531676.33 schema:affiliation grid-institutes:grid.413629.b
    169 schema:familyName Yáñez
    170 schema:givenName RJ
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701531676.33
    172 rdf:type schema:Person
    173 sg:pub.10.1007/bf00360400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000577159
    174 https://doi.org/10.1007/bf00360400
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/bf01232748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046060918
    177 https://doi.org/10.1007/bf01232748
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/bf01924010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000337247
    180 https://doi.org/10.1007/bf01924010
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/bf01980206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022699927
    183 https://doi.org/10.1007/bf01980206
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/bf02174450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001862034
    186 https://doi.org/10.1007/bf02174450
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/317230a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005647127
    189 https://doi.org/10.1038/317230a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/338150a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019082387
    192 https://doi.org/10.1038/338150a0
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/38410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048288589
    195 https://doi.org/10.1038/38410
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/386732a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008042972
    198 https://doi.org/10.1038/386732a0
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/386804a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022615608
    201 https://doi.org/10.1038/386804a0
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/387450a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001988850
    204 https://doi.org/10.1038/387450a0
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/387520a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029483387
    207 https://doi.org/10.1038/387520a0
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/41358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023520765
    210 https://doi.org/10.1038/41358
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ng0194-90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024528923
    213 https://doi.org/10.1038/ng0194-90
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ng0296-174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017853247
    216 https://doi.org/10.1038/ng0296-174
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/ng0793-239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011529981
    219 https://doi.org/10.1038/ng0793-239
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/ng1292-283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011756318
    222 https://doi.org/10.1038/ng1292-283
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/sj.gt.3300457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003072328
    225 https://doi.org/10.1038/sj.gt.3300457
    226 rdf:type schema:CreativeWork
    227 grid-institutes:grid.413629.b schema:alternateName Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, W12 0NN, London, UK
    228 schema:name Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, W12 0NN, London, UK
    229 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...