Significant variation in haplotype block structure but conservation in tagSNP patterns among global populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-03

AUTHORS

Sheng Gu, Andrew J Pakstis, Hui Li, William C Speed, Judith R Kidd, Kenneth K Kidd

ABSTRACT

The initial belief that haplotype block boundaries and haplotypes were largely shared across populations was a foundation for constructing a haplotype map of the human genome using common SNP markers. The HapMap data document the generality of a block-like pattern of linkage disequilibrium (LD) with regions of low and high haplotype diversity but differences among the populations. Studies of many additional populations demonstrate that LD patterns can be highly variable among populations both across and within geographic regions. Because of this variation, emphasis has shifted to the generalizability of tagSNPs, those SNPs that capture the bulk of variation in a region. We have examined the LD and tagSNP patterns based upon over 2000 individual samples in 38 populations and 134 SNPs in 10 genetically independent loci for a total of 517 kb with an average density of 1 SNP/5 kb. Four different 'block' definitions and the pairwise LD tagSNP selection algorithm have been applied. Our results not only confirm large variation in block partition among populations from different regions (agreeing with previous studies including the HapMap) but also show that significant variation can occur among populations within geographic regions. None of the block-defining algorithms produces a consistent pattern within or across all geographic groups. In contrast, tagSNP transferability is much greater than the similarity of LD patterns and, although not perfect, some generalizations of transferability are possible. The analyses show an asymmetric pattern of tagSNP transferability coinciding with the subsetting of variation attributed to the spread of modern humans around the world. More... »

PAGES

5201751

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejhg.5201751

DOI

http://dx.doi.org/10.1038/sj.ejhg.5201751

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048157297

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17202997


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synteny", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Sheng", 
        "id": "sg:person.0630373743.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630373743.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pakstis", 
        "givenName": "Andrew J", 
        "id": "sg:person.01147776341.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147776341.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hui", 
        "id": "sg:person.014267324524.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014267324524.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speed", 
        "givenName": "William C", 
        "id": "sg:person.01306046677.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306046677.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidd", 
        "givenName": "Judith R", 
        "id": "sg:person.01216111541.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216111541.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidd", 
        "givenName": "Kenneth K", 
        "id": "sg:person.01264224741.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003073534", 
          "https://doi.org/10.1038/sj.ejhg.5201583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003073534", 
          "https://doi.org/10.1038/sj.ejhg.5201583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/91060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007029602", 
          "https://doi.org/10.1038/91060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/91060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007029602", 
          "https://doi.org/10.1038/91060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.2.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008927947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012092588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017573512", 
          "https://doi.org/10.1038/ng1001-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.10094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020274624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020735175", 
          "https://doi.org/10.1038/ng1438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020735175", 
          "https://doi.org/10.1038/ng1438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0030193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022427534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0030193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022427534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.102186799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023902137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027164963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-7364-1-6-399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029925659", 
          "https://doi.org/10.1186/1479-7364-1-6-399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033654326", 
          "https://doi.org/10.1038/nature02168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034951122", 
          "https://doi.org/10.1038/sj.ejhg.5201368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejhg.5201368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034951122", 
          "https://doi.org/10.1038/sj.ejhg.5201368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037037107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004390050809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041374038", 
          "https://doi.org/10.1007/s004390050809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004390050809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041374038", 
          "https://doi.org/10.1007/s004390050809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975627", 
          "https://doi.org/10.1038/ng1669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975627", 
          "https://doi.org/10.1038/ng1669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975627", 
          "https://doi.org/10.1038/ng1669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000070664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046973797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/303069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048087491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252964", 
          "https://doi.org/10.1038/35075590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252964", 
          "https://doi.org/10.1038/35075590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jhered/esh060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050974654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4138406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051484874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/301977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058609569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058640423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058640423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/378099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058671155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5281.1516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554106"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "The initial belief that haplotype block boundaries and haplotypes were largely shared across populations was a foundation for constructing a haplotype map of the human genome using common SNP markers. The HapMap data document the generality of a block-like pattern of linkage disequilibrium (LD) with regions of low and high haplotype diversity but differences among the populations. Studies of many additional populations demonstrate that LD patterns can be highly variable among populations both across and within geographic regions. Because of this variation, emphasis has shifted to the generalizability of tagSNPs, those SNPs that capture the bulk of variation in a region. We have examined the LD and tagSNP patterns based upon over 2000 individual samples in 38 populations and 134 SNPs in 10 genetically independent loci for a total of 517 kb with an average density of 1 SNP/5 kb. Four different 'block' definitions and the pairwise LD tagSNP selection algorithm have been applied. Our results not only confirm large variation in block partition among populations from different regions (agreeing with previous studies including the HapMap) but also show that significant variation can occur among populations within geographic regions. None of the block-defining algorithms produces a consistent pattern within or across all geographic groups. In contrast, tagSNP transferability is much greater than the similarity of LD patterns and, although not perfect, some generalizations of transferability are possible. The analyses show an asymmetric pattern of tagSNP transferability coinciding with the subsetting of variation attributed to the spread of modern humans around the world.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.ejhg.5201751", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2436384", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103410", 
        "issn": [
          "1018-4813", 
          "1476-5438"
        ], 
        "name": "European Journal of Human Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Significant variation in haplotype block structure but conservation in tagSNP patterns among global populations", 
    "pagination": "5201751", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e569da561a2828cac32e1ceec0b1555ecd144713f0ba044a5556b07f0b54e016"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17202997"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9302235"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejhg.5201751"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048157297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejhg.5201751", 
      "https://app.dimensions.ai/details/publication/pub.1048157297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29200_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/5201751"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5201751'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5201751'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5201751'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5201751'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      68 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejhg.5201751 schema:about N1c822d34ca1c413486c2c6ce3efb44f7
2 N6436bfc6c0cd4ee2911be6d55623a474
3 N7bba5b2a368e4f55add446f3f2783459
4 N846657b6e1a147c8928bed086da03335
5 Nbd6a9189d4bf4c2e87a51b450278ffe9
6 Nf3f843f848e946e89350b1055e80573f
7 Nfccb49e314734620bbd61a9c80baf3aa
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N58f7f08b16e648108853e2c07eaee489
11 schema:citation sg:pub.10.1007/s004390050809
12 sg:pub.10.1038/35075590
13 sg:pub.10.1038/91060
14 sg:pub.10.1038/nature02168
15 sg:pub.10.1038/nature04226
16 sg:pub.10.1038/ng1001-229
17 sg:pub.10.1038/ng1001-233
18 sg:pub.10.1038/ng1438
19 sg:pub.10.1038/ng1669
20 sg:pub.10.1038/sj.ejhg.5201368
21 sg:pub.10.1038/sj.ejhg.5201583
22 sg:pub.10.1186/1479-7364-1-6-399
23 https://doi.org/10.1002/ajpa.10094
24 https://doi.org/10.1002/gepi.20026
25 https://doi.org/10.1073/pnas.102186799
26 https://doi.org/10.1086/301977
27 https://doi.org/10.1086/302699
28 https://doi.org/10.1086/302952
29 https://doi.org/10.1086/303069
30 https://doi.org/10.1086/344398
31 https://doi.org/10.1086/378099
32 https://doi.org/10.1093/bioinformatics/16.2.182
33 https://doi.org/10.1093/bioinformatics/bth457
34 https://doi.org/10.1093/bioinformatics/bti649
35 https://doi.org/10.1093/jhered/esh060
36 https://doi.org/10.1093/nar/29.1.317
37 https://doi.org/10.1101/gr.4138406
38 https://doi.org/10.1126/science.1065573
39 https://doi.org/10.1126/science.1069424
40 https://doi.org/10.1126/science.273.5281.1516
41 https://doi.org/10.1159/000070664
42 https://doi.org/10.1371/journal.pbio.0030193
43 schema:datePublished 2007-03
44 schema:datePublishedReg 2007-03-01
45 schema:description The initial belief that haplotype block boundaries and haplotypes were largely shared across populations was a foundation for constructing a haplotype map of the human genome using common SNP markers. The HapMap data document the generality of a block-like pattern of linkage disequilibrium (LD) with regions of low and high haplotype diversity but differences among the populations. Studies of many additional populations demonstrate that LD patterns can be highly variable among populations both across and within geographic regions. Because of this variation, emphasis has shifted to the generalizability of tagSNPs, those SNPs that capture the bulk of variation in a region. We have examined the LD and tagSNP patterns based upon over 2000 individual samples in 38 populations and 134 SNPs in 10 genetically independent loci for a total of 517 kb with an average density of 1 SNP/5 kb. Four different 'block' definitions and the pairwise LD tagSNP selection algorithm have been applied. Our results not only confirm large variation in block partition among populations from different regions (agreeing with previous studies including the HapMap) but also show that significant variation can occur among populations within geographic regions. None of the block-defining algorithms produces a consistent pattern within or across all geographic groups. In contrast, tagSNP transferability is much greater than the similarity of LD patterns and, although not perfect, some generalizations of transferability are possible. The analyses show an asymmetric pattern of tagSNP transferability coinciding with the subsetting of variation attributed to the spread of modern humans around the world.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N1c1a682b48464d87a8937acc20443306
50 N520afcd110ef459b84b2dede2ae2898e
51 sg:journal.1103410
52 schema:name Significant variation in haplotype block structure but conservation in tagSNP patterns among global populations
53 schema:pagination 5201751
54 schema:productId N787251289f824b839357f45ae4d49782
55 N7f947c7b76ed4729b9c1c4d6d201af59
56 N89e835c9993240a8aaa1327675898568
57 Nadd6dca38a8e48789385cf7e9c8c9995
58 Nebbd61c55c574c0598560c13bc87a052
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048157297
60 https://doi.org/10.1038/sj.ejhg.5201751
61 schema:sdDatePublished 2019-04-11T11:54
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nf34a554591bc4c1781dc0b122f05c8a6
64 schema:url http://www.nature.com/articles/5201751
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N07f1a77285a545ada9927becb14763d0 rdf:first sg:person.01264224741.31
69 rdf:rest rdf:nil
70 N1c1a682b48464d87a8937acc20443306 schema:volumeNumber 15
71 rdf:type schema:PublicationVolume
72 N1c822d34ca1c413486c2c6ce3efb44f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Synteny
74 rdf:type schema:DefinedTerm
75 N520afcd110ef459b84b2dede2ae2898e schema:issueNumber 3
76 rdf:type schema:PublicationIssue
77 N58f7f08b16e648108853e2c07eaee489 rdf:first sg:person.0630373743.11
78 rdf:rest N5c019df810c741f481cd0f0ca03a1e5b
79 N5c019df810c741f481cd0f0ca03a1e5b rdf:first sg:person.01147776341.54
80 rdf:rest Nb71d90478b6a41ef8dee0554f517eddd
81 N6436bfc6c0cd4ee2911be6d55623a474 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Humans
83 rdf:type schema:DefinedTerm
84 N787251289f824b839357f45ae4d49782 schema:name pubmed_id
85 schema:value 17202997
86 rdf:type schema:PropertyValue
87 N7bba5b2a368e4f55add446f3f2783459 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Genetics, Population
89 rdf:type schema:DefinedTerm
90 N7f947c7b76ed4729b9c1c4d6d201af59 schema:name doi
91 schema:value 10.1038/sj.ejhg.5201751
92 rdf:type schema:PropertyValue
93 N846657b6e1a147c8928bed086da03335 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Genetic Variation
95 rdf:type schema:DefinedTerm
96 N89e835c9993240a8aaa1327675898568 schema:name readcube_id
97 schema:value e569da561a2828cac32e1ceec0b1555ecd144713f0ba044a5556b07f0b54e016
98 rdf:type schema:PropertyValue
99 Na9138c90092c456fb67410bebbb29446 rdf:first sg:person.01306046677.16
100 rdf:rest Nee6e50fffdb2427f81232d91f3a1c433
101 Nadd6dca38a8e48789385cf7e9c8c9995 schema:name dimensions_id
102 schema:value pub.1048157297
103 rdf:type schema:PropertyValue
104 Nb71d90478b6a41ef8dee0554f517eddd rdf:first sg:person.014267324524.94
105 rdf:rest Na9138c90092c456fb67410bebbb29446
106 Nbd6a9189d4bf4c2e87a51b450278ffe9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Polymorphism, Single Nucleotide
108 rdf:type schema:DefinedTerm
109 Nebbd61c55c574c0598560c13bc87a052 schema:name nlm_unique_id
110 schema:value 9302235
111 rdf:type schema:PropertyValue
112 Nee6e50fffdb2427f81232d91f3a1c433 rdf:first sg:person.01216111541.41
113 rdf:rest N07f1a77285a545ada9927becb14763d0
114 Nf34a554591bc4c1781dc0b122f05c8a6 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nf3f843f848e946e89350b1055e80573f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Linkage Disequilibrium
118 rdf:type schema:DefinedTerm
119 Nfccb49e314734620bbd61a9c80baf3aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Haplotypes
121 rdf:type schema:DefinedTerm
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
126 schema:name Genetics
127 rdf:type schema:DefinedTerm
128 sg:grant.2436384 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5201751
129 rdf:type schema:MonetaryGrant
130 sg:journal.1103410 schema:issn 1018-4813
131 1476-5438
132 schema:name European Journal of Human Genetics
133 rdf:type schema:Periodical
134 sg:person.01147776341.54 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
135 schema:familyName Pakstis
136 schema:givenName Andrew J
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147776341.54
138 rdf:type schema:Person
139 sg:person.01216111541.41 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
140 schema:familyName Kidd
141 schema:givenName Judith R
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216111541.41
143 rdf:type schema:Person
144 sg:person.01264224741.31 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
145 schema:familyName Kidd
146 schema:givenName Kenneth K
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31
148 rdf:type schema:Person
149 sg:person.01306046677.16 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
150 schema:familyName Speed
151 schema:givenName William C
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306046677.16
153 rdf:type schema:Person
154 sg:person.014267324524.94 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
155 schema:familyName Li
156 schema:givenName Hui
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014267324524.94
158 rdf:type schema:Person
159 sg:person.0630373743.11 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
160 schema:familyName Gu
161 schema:givenName Sheng
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630373743.11
163 rdf:type schema:Person
164 sg:pub.10.1007/s004390050809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041374038
165 https://doi.org/10.1007/s004390050809
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/35075590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049252964
168 https://doi.org/10.1038/35075590
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/91060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007029602
171 https://doi.org/10.1038/91060
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature02168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033654326
174 https://doi.org/10.1038/nature02168
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
177 https://doi.org/10.1038/nature04226
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ng1001-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026787741
180 https://doi.org/10.1038/ng1001-229
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ng1001-233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017573512
183 https://doi.org/10.1038/ng1001-233
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ng1438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020735175
186 https://doi.org/10.1038/ng1438
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ng1669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042975627
189 https://doi.org/10.1038/ng1669
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/sj.ejhg.5201368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034951122
192 https://doi.org/10.1038/sj.ejhg.5201368
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/sj.ejhg.5201583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003073534
195 https://doi.org/10.1038/sj.ejhg.5201583
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1479-7364-1-6-399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029925659
198 https://doi.org/10.1186/1479-7364-1-6-399
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/ajpa.10094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020274624
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/gepi.20026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037037107
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1073/pnas.102186799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023902137
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1086/301977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058609569
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1086/302699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610265
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1086/302952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610499
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1086/303069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048087491
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1086/344398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058640423
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1086/378099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058671155
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/16.2.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008927947
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/bioinformatics/bti649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027164963
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/jhered/esh060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050974654
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/29.1.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012092588
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1101/gr.4138406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051484874
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.1065573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445519
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1126/science.273.5281.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554106
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1159/000070664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046973797
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1371/journal.pbio.0030193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022427534
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
241 schema:name Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...