The family based association test method: strategies for studying general genotype–phenotype associations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-04-20

AUTHORS

Steve Horvath, Xin Xu, Nan M Laird

ABSTRACT

With possibly incomplete nuclear families, the family based association test (FBAT) method allows one to evaluate any test statistic that can be expressed as the sum of products (covariance) between an arbitrary function of an offspring's genotype with an arbitrary function of the offspring's phenotype. We derive expressions needed to calculate the mean and variance of these test statistics under the null hypothesis of no linkage. To give some guidance on using the FBAT method, we present three simple data analysis strategies for different phenotypes: dichotomous (affection status), quantitative and censored (eg, the age of onset). We illustrate the approach by applying it to candidate gene data of the NIMH Alzheimer Disease Initiative. We show that the RC-TDT is equivalent to a special case of the FBAT method. This result allows us to generalise the RC-TDT to dominant, recessive and multi-allelic marker codings. Simulations compare the resulting FBAT tests to the RC-TDT and the S-TDT. The FBAT software is freely available. More... »

PAGES

301-306

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625

DOI

http://dx.doi.org/10.1038/sj.ejhg.5200625

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026220336

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11313775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Computing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nuclear Family", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Institute for Medical Statistics & Genetic Epidemiology, University of Bonn, Bonn, Germany", 
            "Department of Human Genetics, University of California at Los Angeles, Los Angeles, California, USA", 
            "Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horvath", 
        "givenName": "Steve", 
        "id": "sg:person.015714446737.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714446737.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program for Population Genetics, Harvard School of Public Health, Boston, Masachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Program for Population Genetics, Harvard School of Public Health, Boston, Masachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Xin", 
        "id": "sg:person.015701245564.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015701245564.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laird", 
        "givenName": "Nan M", 
        "id": "sg:person.01205773172.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205773172.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-04-20", 
    "datePublishedReg": "2001-04-20", 
    "description": "With possibly incomplete nuclear families, the family based association test (FBAT) method allows one to evaluate any test statistic that can be expressed as the sum of products (covariance) between an arbitrary function of an offspring's genotype with an arbitrary function of the offspring's phenotype. We derive expressions needed to calculate the mean and variance of these test statistics under the null hypothesis of no linkage. To give some guidance on using the FBAT method, we present three simple data analysis strategies for different phenotypes: dichotomous (affection status), quantitative and censored (eg, the age of onset). We illustrate the approach by applying it to candidate gene data of the NIMH Alzheimer Disease Initiative. We show that the RC-TDT is equivalent to a special case of the FBAT method. This result allows us to generalise the RC-TDT to dominant, recessive and multi-allelic marker codings. Simulations compare the resulting FBAT tests to the RC-TDT and the S-TDT. The FBAT software is freely available.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/sj.ejhg.5200625", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2692321", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2549038", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2692318", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2692323", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103410", 
        "issn": [
          "1018-4813", 
          "1476-5438"
        ], 
        "name": "European Journal of Human Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "Disease Initiative", 
      "FBAT software", 
      "genotype-phenotype associations", 
      "phenotype", 
      "FBAT method", 
      "different phenotypes", 
      "simple data analysis strategy", 
      "nuclear families", 
      "genotypes", 
      "offspring phenotype", 
      "FBAT test", 
      "TdT", 
      "association", 
      "family", 
      "function", 
      "offspring genotypes", 
      "expression", 
      "hypothesis", 
      "strategies", 
      "cases", 
      "test", 
      "method", 
      "statistics", 
      "guidance", 
      "data", 
      "variance", 
      "null hypothesis", 
      "data analysis strategies", 
      "analysis strategy", 
      "initiatives", 
      "results", 
      "test method", 
      "linkage", 
      "products", 
      "approach", 
      "gene data", 
      "sum", 
      "coding", 
      "software", 
      "test statistic", 
      "marker coding", 
      "sum of products", 
      "special case", 
      "incomplete nuclear families", 
      "simulations", 
      "arbitrary functions", 
      "association test (FBAT) method", 
      "NIMH Alzheimer Disease Initiative", 
      "Alzheimer Disease Initiative", 
      "RC-TDT", 
      "multi-allelic marker codings", 
      "general genotype\u2013phenotype associations"
    ], 
    "name": "The family based association test method: strategies for studying general genotype\u2013phenotype associations", 
    "pagination": "301-306", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026220336"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejhg.5200625"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11313775"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejhg.5200625", 
      "https://app.dimensions.ai/details/publication/pub.1026220336"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_338.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/sj.ejhg.5200625"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      90 URIs      82 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejhg.5200625 schema:about N0bd7d98ad82f4c569b7d19dd4406aa1b
2 N2aacf1222dfb4b79aec2cdbc9bd410b2
3 N37d5dc78bd1749aea88d328cad6f712d
4 N3cf89b30f2654f33bb920baa28c65fc9
5 N55d4cef962434564bba42c8fefb012ae
6 N63912ad3ec0f4a35905835590e765e64
7 N6d8a67ce4efb427aa0d4c1a90a6fcc95
8 N80323d18f5214ac0b15a233d3570d8e7
9 Nb46bdde1f1d24b6481f3aa343a7bb58c
10 Ncc4fcc802e6a46eda5e5f31b45d1cb7d
11 Neb4e31445fc54126bb7042909626e4bc
12 Nffd6e1c20e4141a38757ada11b384d66
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author Nacaad30462784fba9c443d68aefc04fd
16 schema:datePublished 2001-04-20
17 schema:datePublishedReg 2001-04-20
18 schema:description With possibly incomplete nuclear families, the family based association test (FBAT) method allows one to evaluate any test statistic that can be expressed as the sum of products (covariance) between an arbitrary function of an offspring's genotype with an arbitrary function of the offspring's phenotype. We derive expressions needed to calculate the mean and variance of these test statistics under the null hypothesis of no linkage. To give some guidance on using the FBAT method, we present three simple data analysis strategies for different phenotypes: dichotomous (affection status), quantitative and censored (eg, the age of onset). We illustrate the approach by applying it to candidate gene data of the NIMH Alzheimer Disease Initiative. We show that the RC-TDT is equivalent to a special case of the FBAT method. This result allows us to generalise the RC-TDT to dominant, recessive and multi-allelic marker codings. Simulations compare the resulting FBAT tests to the RC-TDT and the S-TDT. The FBAT software is freely available.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N074a7ffc20054adea9e93f411917a28e
23 N8a62b8f2323641e4bdd1e8deb8233596
24 sg:journal.1103410
25 schema:keywords Alzheimer Disease Initiative
26 Disease Initiative
27 FBAT method
28 FBAT software
29 FBAT test
30 NIMH Alzheimer Disease Initiative
31 RC-TDT
32 TdT
33 analysis strategy
34 approach
35 arbitrary functions
36 association
37 association test (FBAT) method
38 cases
39 coding
40 data
41 data analysis strategies
42 different phenotypes
43 expression
44 family
45 function
46 gene data
47 general genotype–phenotype associations
48 genotype-phenotype associations
49 genotypes
50 guidance
51 hypothesis
52 incomplete nuclear families
53 initiatives
54 linkage
55 marker coding
56 method
57 multi-allelic marker codings
58 nuclear families
59 null hypothesis
60 offspring genotypes
61 offspring phenotype
62 phenotype
63 products
64 results
65 simple data analysis strategy
66 simulations
67 software
68 special case
69 statistics
70 strategies
71 sum
72 sum of products
73 test
74 test method
75 test statistic
76 variance
77 schema:name The family based association test method: strategies for studying general genotype–phenotype associations
78 schema:pagination 301-306
79 schema:productId N9e7960063c154d3eb23b4bae6bd9133b
80 Nc981648aa0c4421393ea79432dc6bd1e
81 Nd70f2883e0ab4600a645541cd4d1a845
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026220336
83 https://doi.org/10.1038/sj.ejhg.5200625
84 schema:sdDatePublished 2021-11-01T18:04
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N2551d11495eb4785a99e0b9296d1baa5
87 schema:url https://doi.org/10.1038/sj.ejhg.5200625
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N074a7ffc20054adea9e93f411917a28e schema:volumeNumber 9
92 rdf:type schema:PublicationVolume
93 N0bd7d98ad82f4c569b7d19dd4406aa1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Computer Simulation
95 rdf:type schema:DefinedTerm
96 N2551d11495eb4785a99e0b9296d1baa5 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N26fbd5ac43a94e3396299977c44cd2da rdf:first sg:person.015701245564.04
99 rdf:rest Na14343200202407d85eea1240a973ded
100 N2aacf1222dfb4b79aec2cdbc9bd410b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Models, Statistical
102 rdf:type schema:DefinedTerm
103 N37d5dc78bd1749aea88d328cad6f712d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Mathematical Computing
105 rdf:type schema:DefinedTerm
106 N3cf89b30f2654f33bb920baa28c65fc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Genetic Markers
108 rdf:type schema:DefinedTerm
109 N55d4cef962434564bba42c8fefb012ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Data Interpretation, Statistical
111 rdf:type schema:DefinedTerm
112 N63912ad3ec0f4a35905835590e765e64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Genotype
114 rdf:type schema:DefinedTerm
115 N6d8a67ce4efb427aa0d4c1a90a6fcc95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Phenotype
117 rdf:type schema:DefinedTerm
118 N80323d18f5214ac0b15a233d3570d8e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Models, Genetic
120 rdf:type schema:DefinedTerm
121 N8a62b8f2323641e4bdd1e8deb8233596 schema:issueNumber 4
122 rdf:type schema:PublicationIssue
123 N9e7960063c154d3eb23b4bae6bd9133b schema:name pubmed_id
124 schema:value 11313775
125 rdf:type schema:PropertyValue
126 Na14343200202407d85eea1240a973ded rdf:first sg:person.01205773172.25
127 rdf:rest rdf:nil
128 Nacaad30462784fba9c443d68aefc04fd rdf:first sg:person.015714446737.06
129 rdf:rest N26fbd5ac43a94e3396299977c44cd2da
130 Nb46bdde1f1d24b6481f3aa343a7bb58c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 Nc981648aa0c4421393ea79432dc6bd1e schema:name doi
134 schema:value 10.1038/sj.ejhg.5200625
135 rdf:type schema:PropertyValue
136 Ncc4fcc802e6a46eda5e5f31b45d1cb7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Quantitative Trait, Heritable
138 rdf:type schema:DefinedTerm
139 Nd70f2883e0ab4600a645541cd4d1a845 schema:name dimensions_id
140 schema:value pub.1026220336
141 rdf:type schema:PropertyValue
142 Neb4e31445fc54126bb7042909626e4bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Nuclear Family
144 rdf:type schema:DefinedTerm
145 Nffd6e1c20e4141a38757ada11b384d66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Alzheimer Disease
147 rdf:type schema:DefinedTerm
148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biological Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
152 schema:name Genetics
153 rdf:type schema:DefinedTerm
154 sg:grant.2549038 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5200625
155 rdf:type schema:MonetaryGrant
156 sg:grant.2692318 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5200625
157 rdf:type schema:MonetaryGrant
158 sg:grant.2692321 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5200625
159 rdf:type schema:MonetaryGrant
160 sg:grant.2692323 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5200625
161 rdf:type schema:MonetaryGrant
162 sg:journal.1103410 schema:issn 1018-4813
163 1476-5438
164 schema:name European Journal of Human Genetics
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01205773172.25 schema:affiliation grid-institutes:grid.38142.3c
168 schema:familyName Laird
169 schema:givenName Nan M
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205773172.25
171 rdf:type schema:Person
172 sg:person.015701245564.04 schema:affiliation grid-institutes:grid.38142.3c
173 schema:familyName Xu
174 schema:givenName Xin
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015701245564.04
176 rdf:type schema:Person
177 sg:person.015714446737.06 schema:affiliation grid-institutes:grid.19006.3e
178 schema:familyName Horvath
179 schema:givenName Steve
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714446737.06
181 rdf:type schema:Person
182 grid-institutes:grid.19006.3e schema:alternateName Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA
183 schema:name Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA
184 Department of Human Genetics, University of California at Los Angeles, Los Angeles, California, USA
185 Institute for Medical Statistics & Genetic Epidemiology, University of Bonn, Bonn, Germany
186 rdf:type schema:Organization
187 grid-institutes:grid.38142.3c schema:alternateName Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
188 Program for Population Genetics, Harvard School of Public Health, Boston, Masachusetts, USA
189 schema:name Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
190 Program for Population Genetics, Harvard School of Public Health, Boston, Masachusetts, USA
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...