The family based association test method: strategies for studying general genotype–phenotype associations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-04-20

AUTHORS

Steve Horvath, Xin Xu, Nan M Laird

ABSTRACT

With possibly incomplete nuclear families, the family based association test (FBAT) method allows one to evaluate any test statistic that can be expressed as the sum of products (covariance) between an arbitrary function of an offspring's genotype with an arbitrary function of the offspring's phenotype. We derive expressions needed to calculate the mean and variance of these test statistics under the null hypothesis of no linkage. To give some guidance on using the FBAT method, we present three simple data analysis strategies for different phenotypes: dichotomous (affection status), quantitative and censored (eg, the age of onset). We illustrate the approach by applying it to candidate gene data of the NIMH Alzheimer Disease Initiative. We show that the RC-TDT is equivalent to a special case of the FBAT method. This result allows us to generalise the RC-TDT to dominant, recessive and multi-allelic marker codings. Simulations compare the resulting FBAT tests to the RC-TDT and the S-TDT. The FBAT software is freely available. More... »

PAGES

301-306

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625

DOI

http://dx.doi.org/10.1038/sj.ejhg.5200625

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026220336

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11313775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Computing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nuclear Family", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Institute for Medical Statistics & Genetic Epidemiology, University of Bonn, Bonn, Germany", 
            "Department of Human Genetics, University of California at Los Angeles, Los Angeles, California, USA", 
            "Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horvath", 
        "givenName": "Steve", 
        "id": "sg:person.015714446737.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714446737.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program for Population Genetics, Harvard School of Public Health, Boston, Masachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Program for Population Genetics, Harvard School of Public Health, Boston, Masachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Xin", 
        "id": "sg:person.015701245564.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015701245564.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laird", 
        "givenName": "Nan M", 
        "id": "sg:person.01205773172.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205773172.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-04-20", 
    "datePublishedReg": "2001-04-20", 
    "description": "With possibly incomplete nuclear families, the family based association test (FBAT) method allows one to evaluate any test statistic that can be expressed as the sum of products (covariance) between an arbitrary function of an offspring's genotype with an arbitrary function of the offspring's phenotype. We derive expressions needed to calculate the mean and variance of these test statistics under the null hypothesis of no linkage. To give some guidance on using the FBAT method, we present three simple data analysis strategies for different phenotypes: dichotomous (affection status), quantitative and censored (eg, the age of onset). We illustrate the approach by applying it to candidate gene data of the NIMH Alzheimer Disease Initiative. We show that the RC-TDT is equivalent to a special case of the FBAT method. This result allows us to generalise the RC-TDT to dominant, recessive and multi-allelic marker codings. Simulations compare the resulting FBAT tests to the RC-TDT and the S-TDT. The FBAT software is freely available.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/sj.ejhg.5200625", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2692321", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2549038", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2692318", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2692323", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103410", 
        "issn": [
          "1018-4813", 
          "1476-5438"
        ], 
        "name": "European Journal of Human Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "Disease Initiative", 
      "FBAT software", 
      "genotype-phenotype associations", 
      "phenotype", 
      "FBAT method", 
      "different phenotypes", 
      "simple data analysis strategy", 
      "nuclear families", 
      "genotypes", 
      "offspring phenotype", 
      "FBAT test", 
      "TdT", 
      "association", 
      "family", 
      "function", 
      "offspring genotypes", 
      "expression", 
      "hypothesis", 
      "strategies", 
      "cases", 
      "test", 
      "method", 
      "statistics", 
      "guidance", 
      "data", 
      "variance", 
      "null hypothesis", 
      "data analysis strategies", 
      "analysis strategy", 
      "initiatives", 
      "results", 
      "test method", 
      "linkage", 
      "products", 
      "approach", 
      "gene data", 
      "sum", 
      "coding", 
      "software", 
      "test statistic", 
      "marker coding", 
      "sum of products", 
      "special case", 
      "incomplete nuclear families", 
      "simulations", 
      "arbitrary functions", 
      "association test (FBAT) method", 
      "NIMH Alzheimer Disease Initiative", 
      "Alzheimer Disease Initiative", 
      "RC-TDT", 
      "multi-allelic marker codings", 
      "general genotype\u2013phenotype associations"
    ], 
    "name": "The family based association test method: strategies for studying general genotype\u2013phenotype associations", 
    "pagination": "301-306", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026220336"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejhg.5200625"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11313775"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejhg.5200625", 
      "https://app.dimensions.ai/details/publication/pub.1026220336"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_338.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/sj.ejhg.5200625"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejhg.5200625'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      90 URIs      82 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejhg.5200625 schema:about N084488cc02814929aa9a1e12e87d2ade
2 N1e7ca75eece54e61b6650437dcb3ffd5
3 N279c60c64b5242af97e70ab7bba62aed
4 N2f3db7561ceb47bba2066029ba24eff8
5 N4c4e7ecb5f094004bb11e08b2ba5cc8c
6 N70329623ec8a414ab35c6a02fc788b02
7 Nc3b62d4a9a274b83a2a43f6f1adbc505
8 Nd1a34d4c823949c0bc92e0833dfe99c9
9 Ndba95af173744745badb9d720f9549d2
10 Nf3abe52181914bbb8bd8b05a85ed6637
11 Nf8c8b3cae13042009ddfd2a962bc6d59
12 Nfe8786b39c2d4d9a9f9832942aa36d3f
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author Nd6eab7ce83fe49609bd12baf6c9fc20f
16 schema:datePublished 2001-04-20
17 schema:datePublishedReg 2001-04-20
18 schema:description With possibly incomplete nuclear families, the family based association test (FBAT) method allows one to evaluate any test statistic that can be expressed as the sum of products (covariance) between an arbitrary function of an offspring's genotype with an arbitrary function of the offspring's phenotype. We derive expressions needed to calculate the mean and variance of these test statistics under the null hypothesis of no linkage. To give some guidance on using the FBAT method, we present three simple data analysis strategies for different phenotypes: dichotomous (affection status), quantitative and censored (eg, the age of onset). We illustrate the approach by applying it to candidate gene data of the NIMH Alzheimer Disease Initiative. We show that the RC-TDT is equivalent to a special case of the FBAT method. This result allows us to generalise the RC-TDT to dominant, recessive and multi-allelic marker codings. Simulations compare the resulting FBAT tests to the RC-TDT and the S-TDT. The FBAT software is freely available.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N37d4ba15e4e243bba89e36a2be37a3f2
23 N6d60450e4bfd4fb7bd873ad3a62cc4b2
24 sg:journal.1103410
25 schema:keywords Alzheimer Disease Initiative
26 Disease Initiative
27 FBAT method
28 FBAT software
29 FBAT test
30 NIMH Alzheimer Disease Initiative
31 RC-TDT
32 TdT
33 analysis strategy
34 approach
35 arbitrary functions
36 association
37 association test (FBAT) method
38 cases
39 coding
40 data
41 data analysis strategies
42 different phenotypes
43 expression
44 family
45 function
46 gene data
47 general genotype–phenotype associations
48 genotype-phenotype associations
49 genotypes
50 guidance
51 hypothesis
52 incomplete nuclear families
53 initiatives
54 linkage
55 marker coding
56 method
57 multi-allelic marker codings
58 nuclear families
59 null hypothesis
60 offspring genotypes
61 offspring phenotype
62 phenotype
63 products
64 results
65 simple data analysis strategy
66 simulations
67 software
68 special case
69 statistics
70 strategies
71 sum
72 sum of products
73 test
74 test method
75 test statistic
76 variance
77 schema:name The family based association test method: strategies for studying general genotype–phenotype associations
78 schema:pagination 301-306
79 schema:productId N43c680d92e074a578f5aa8be42a27192
80 N5fe1dbea27444ed3a415c48b64fa4466
81 N8e95304d17af46fc986fee8e4e37e04c
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026220336
83 https://doi.org/10.1038/sj.ejhg.5200625
84 schema:sdDatePublished 2021-11-01T18:04
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N19749c825c8f42c09c5ce4d5627ed711
87 schema:url https://doi.org/10.1038/sj.ejhg.5200625
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N084488cc02814929aa9a1e12e87d2ade schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Quantitative Trait, Heritable
93 rdf:type schema:DefinedTerm
94 N19749c825c8f42c09c5ce4d5627ed711 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N1e7ca75eece54e61b6650437dcb3ffd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Models, Genetic
98 rdf:type schema:DefinedTerm
99 N279c60c64b5242af97e70ab7bba62aed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Nuclear Family
101 rdf:type schema:DefinedTerm
102 N2f3db7561ceb47bba2066029ba24eff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Models, Statistical
104 rdf:type schema:DefinedTerm
105 N37d4ba15e4e243bba89e36a2be37a3f2 schema:issueNumber 4
106 rdf:type schema:PublicationIssue
107 N3a05d4643f8440ba9221c4f7f02b481b rdf:first sg:person.015701245564.04
108 rdf:rest N5a58c6426aa34fb2b42788cdde04c8c1
109 N43c680d92e074a578f5aa8be42a27192 schema:name pubmed_id
110 schema:value 11313775
111 rdf:type schema:PropertyValue
112 N4c4e7ecb5f094004bb11e08b2ba5cc8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Computer Simulation
114 rdf:type schema:DefinedTerm
115 N5a58c6426aa34fb2b42788cdde04c8c1 rdf:first sg:person.01205773172.25
116 rdf:rest rdf:nil
117 N5fe1dbea27444ed3a415c48b64fa4466 schema:name dimensions_id
118 schema:value pub.1026220336
119 rdf:type schema:PropertyValue
120 N6d60450e4bfd4fb7bd873ad3a62cc4b2 schema:volumeNumber 9
121 rdf:type schema:PublicationVolume
122 N70329623ec8a414ab35c6a02fc788b02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Mathematical Computing
124 rdf:type schema:DefinedTerm
125 N8e95304d17af46fc986fee8e4e37e04c schema:name doi
126 schema:value 10.1038/sj.ejhg.5200625
127 rdf:type schema:PropertyValue
128 Nc3b62d4a9a274b83a2a43f6f1adbc505 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Alzheimer Disease
130 rdf:type schema:DefinedTerm
131 Nd1a34d4c823949c0bc92e0833dfe99c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Genetic Markers
133 rdf:type schema:DefinedTerm
134 Nd6eab7ce83fe49609bd12baf6c9fc20f rdf:first sg:person.015714446737.06
135 rdf:rest N3a05d4643f8440ba9221c4f7f02b481b
136 Ndba95af173744745badb9d720f9549d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Data Interpretation, Statistical
138 rdf:type schema:DefinedTerm
139 Nf3abe52181914bbb8bd8b05a85ed6637 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Genotype
141 rdf:type schema:DefinedTerm
142 Nf8c8b3cae13042009ddfd2a962bc6d59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 Nfe8786b39c2d4d9a9f9832942aa36d3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Phenotype
147 rdf:type schema:DefinedTerm
148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biological Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
152 schema:name Genetics
153 rdf:type schema:DefinedTerm
154 sg:grant.2549038 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5200625
155 rdf:type schema:MonetaryGrant
156 sg:grant.2692318 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5200625
157 rdf:type schema:MonetaryGrant
158 sg:grant.2692321 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5200625
159 rdf:type schema:MonetaryGrant
160 sg:grant.2692323 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejhg.5200625
161 rdf:type schema:MonetaryGrant
162 sg:journal.1103410 schema:issn 1018-4813
163 1476-5438
164 schema:name European Journal of Human Genetics
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01205773172.25 schema:affiliation grid-institutes:grid.38142.3c
168 schema:familyName Laird
169 schema:givenName Nan M
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205773172.25
171 rdf:type schema:Person
172 sg:person.015701245564.04 schema:affiliation grid-institutes:grid.38142.3c
173 schema:familyName Xu
174 schema:givenName Xin
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015701245564.04
176 rdf:type schema:Person
177 sg:person.015714446737.06 schema:affiliation grid-institutes:grid.19006.3e
178 schema:familyName Horvath
179 schema:givenName Steve
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714446737.06
181 rdf:type schema:Person
182 grid-institutes:grid.19006.3e schema:alternateName Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA
183 schema:name Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA
184 Department of Human Genetics, University of California at Los Angeles, Los Angeles, California, USA
185 Institute for Medical Statistics & Genetic Epidemiology, University of Bonn, Bonn, Germany
186 rdf:type schema:Organization
187 grid-institutes:grid.38142.3c schema:alternateName Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
188 Program for Population Genetics, Harvard School of Public Health, Boston, Masachusetts, USA
189 schema:name Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
190 Program for Population Genetics, Harvard School of Public Health, Boston, Masachusetts, USA
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...