Resting energy expenditure can be assessed by dual-energy X-ray absorptiometry in women regardless of age and fitness View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-02-20

AUTHORS

C Usui, E Takahashi, Y Gando, K Sanada, J Oka, M Miyachi, I Tabata, M Higuchi

ABSTRACT

Objective:To evaluate the possibility that measurement of the magnitude and distribution of fundamental somatic heat-producing units using dual-energy X-ray absorptiometry (DXA) can be used to estimate resting energy expenditure (REE) in both young and elderly women with different aerobic fitness levels.Subjects and methods:Peak oxygen uptake (VO2 peak) and REEm were directly measured in 116 young (age: 22.3±2.1 years) and 72 elderly (63.3±6.4 years) women. The subjects were divided into four groups according to categories of age and VO2 peak; young: high fitness (YH, n=58); low fitness (YL, n=58); elderly: high fitness (EH, n=37) and low fitness (EL, n=35). Using DXA, systemic and regional body compositions were measured, and REEe was estimated from the sum of tissue organ weights multiplied by corresponding metabolic rate.Results:Although there were remarkable differences in systemic and regional body compositions, no significant differences were observed between REEm and REEe in the four groups. REEe significantly correlated with REEm in elderly as well as young women; the slopes and intercepts of the two regression lines were statistically not different between the elderly and young groups (elderly: y=0.60x+472, r=0.667; young: y=0.78x+250, r=0.798; P<0.001, respectively). A Bland–Altman analysis did not indicate bias in calculation of REE for all the subjects.Conclusion:These results suggest that REE can be estimated from tissue organ components in women regardless of age and aerobic fitness. More... »

PAGES

529-535

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602980

DOI

http://dx.doi.org/10.1038/sj.ejcn.1602980

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002092875

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18285810


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Absorptiometry, Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Basal Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Physical Fitness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Sport Sciences, Waseda University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Department of Sport Sciences, Graduate School of Human Sciences, Waseda University, Saitama, Japan", 
            "Faculty of Sport Sciences, Waseda University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usui", 
        "givenName": "C", 
        "id": "sg:person.01256442702.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256442702.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Sport Sciences, Graduate School of Human Sciences, Waseda University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Department of Sport Sciences, Graduate School of Human Sciences, Waseda University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "E", 
        "id": "sg:person.01372671302.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372671302.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Sport Sciences, Graduate School of Human Sciences, Waseda University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Department of Sport Sciences, Graduate School of Human Sciences, Waseda University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gando", 
        "givenName": "Y", 
        "id": "sg:person.01204536710.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204536710.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanada", 
        "givenName": "K", 
        "id": "sg:person.01100642414.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Home Economics, Tokyo Kasei University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.440953.f", 
          "name": [
            "Department of Home Economics, Tokyo Kasei University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oka", 
        "givenName": "J", 
        "id": "sg:person.01151612401.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151612401.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyachi", 
        "givenName": "M", 
        "id": "sg:person.01122201430.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabata", 
        "givenName": "I", 
        "id": "sg:person.01070223573.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070223573.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Faculty of Sport Sciences, Waseda University, Saitama, Japan", 
            "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higuchi", 
        "givenName": "M", 
        "id": "sg:person.01342304226.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342304226.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1203/00006450-196705000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031432262", 
          "https://doi.org/10.1203/00006450-196705000-00005"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02-20", 
    "datePublishedReg": "2008-02-20", 
    "description": "Objective:To evaluate the possibility that measurement of the magnitude and distribution of fundamental somatic heat-producing units using dual-energy X-ray absorptiometry (DXA) can be used to estimate resting energy expenditure (REE) in both young and elderly women with different aerobic fitness levels.Subjects and methods:Peak oxygen uptake (VO2 peak) and REEm were directly measured in 116 young (age: 22.3\u00b12.1 years) and 72 elderly (63.3\u00b16.4 years) women. The subjects were divided into four groups according to categories of age and VO2 peak; young: high fitness (YH, n=58); low fitness (YL, n=58); elderly: high fitness (EH, n=37) and low fitness (EL, n=35). Using DXA, systemic and regional body compositions were measured, and REEe was estimated from the sum of tissue organ weights multiplied by corresponding metabolic rate.Results:Although there were remarkable differences in systemic and regional body compositions, no significant differences were observed between REEm and REEe in the four groups. REEe significantly correlated with REEm in elderly as well as young women; the slopes and intercepts of the two regression lines were statistically not different between the elderly and young groups (elderly: y=0.60x+472, r=0.667; young: y=0.78x+250, r=0.798; P<0.001, respectively). A Bland\u2013Altman analysis did not indicate bias in calculation of REE for all the subjects.Conclusion:These results suggest that REE can be estimated from tissue organ components in women regardless of age and aerobic fitness.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/sj.ejcn.1602980", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "dual-energy X-ray absorptiometry", 
      "X-ray absorptiometry", 
      "regional body composition", 
      "elderly women", 
      "body composition", 
      "energy expenditure", 
      "peak oxygen uptake", 
      "different aerobic fitness levels", 
      "aerobic fitness level", 
      "categories of age", 
      "organ weights", 
      "Bland-Altman analysis", 
      "VO2 peak", 
      "calculation of REE", 
      "young women", 
      "younger group", 
      "aerobic fitness", 
      "women", 
      "fitness level", 
      "oxygen uptake", 
      "significant differences", 
      "absorptiometry", 
      "age", 
      "subjects", 
      "organ components", 
      "metabolic rate", 
      "group", 
      "regression line", 
      "lower fitness", 
      "REEm", 
      "differences", 
      "fitness", 
      "expenditure", 
      "remarkable differences", 
      "uptake", 
      "REEe", 
      "levels", 
      "weight", 
      "rate", 
      "categories", 
      "lines", 
      "units", 
      "bias", 
      "higher fitness", 
      "analysis", 
      "intercept", 
      "results", 
      "possibility", 
      "components", 
      "method", 
      "REE", 
      "measurements", 
      "magnitude", 
      "peak", 
      "composition", 
      "distribution", 
      "sum", 
      "slope", 
      "calculations"
    ], 
    "name": "Resting energy expenditure can be assessed by dual-energy X-ray absorptiometry in women regardless of age and fitness", 
    "pagination": "529-535", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002092875"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejcn.1602980"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18285810"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejcn.1602980", 
      "https://app.dimensions.ai/details/publication/pub.1002092875"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_477.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/sj.ejcn.1602980"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602980'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602980'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602980'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602980'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      22 PREDICATES      102 URIs      93 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejcn.1602980 schema:about N287b66eff9cb432eb5eda09017c0746f
2 N2aa06899618e4874a69c2fb6e8873fe7
3 N372e1d19c47448cb97e9d65da679b691
4 N39002a4661104cf497729e0282a624be
5 N505c2feb8a274842a97900f189ee9a3a
6 N7b21a6c4fd8e444596c5ea9b1b769859
7 N859f320437c346819c01381ead568478
8 N9a29b0385c464d958c39751d48663b43
9 Na8705f07252045b9a278c4d64f06de33
10 Nac82275b27444448919bd1b9906a31bb
11 Nad1a99c7300c41f48e27cff931f5c420
12 Nb8d6e78e8c66429b96a090975f1540f9
13 Nc590b13ddbc24e11b47781f5090a7de6
14 Nd6d0147890c940db8b631d6b71c3de11
15 Nd759d50d3bc848e3ac241b19ab466c5c
16 Nfbf360b2f1c24b5a84a0885f47cc2b1d
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author Ndf44065880164b218ebdd8cb6824d3cc
20 schema:citation sg:pub.10.1203/00006450-196705000-00005
21 schema:datePublished 2008-02-20
22 schema:datePublishedReg 2008-02-20
23 schema:description Objective:To evaluate the possibility that measurement of the magnitude and distribution of fundamental somatic heat-producing units using dual-energy X-ray absorptiometry (DXA) can be used to estimate resting energy expenditure (REE) in both young and elderly women with different aerobic fitness levels.Subjects and methods:Peak oxygen uptake (VO2 peak) and REEm were directly measured in 116 young (age: 22.3±2.1 years) and 72 elderly (63.3±6.4 years) women. The subjects were divided into four groups according to categories of age and VO2 peak; young: high fitness (YH, n=58); low fitness (YL, n=58); elderly: high fitness (EH, n=37) and low fitness (EL, n=35). Using DXA, systemic and regional body compositions were measured, and REEe was estimated from the sum of tissue organ weights multiplied by corresponding metabolic rate.Results:Although there were remarkable differences in systemic and regional body compositions, no significant differences were observed between REEm and REEe in the four groups. REEe significantly correlated with REEm in elderly as well as young women; the slopes and intercepts of the two regression lines were statistically not different between the elderly and young groups (elderly: y=0.60x+472, r=0.667; young: y=0.78x+250, r=0.798; P<0.001, respectively). A Bland–Altman analysis did not indicate bias in calculation of REE for all the subjects.Conclusion:These results suggest that REE can be estimated from tissue organ components in women regardless of age and aerobic fitness.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf Nca78a9c6328447fbae38815438cd8a93
28 Ned8031c633f94245bb62e38c1f0ed784
29 sg:journal.1097936
30 schema:keywords Bland-Altman analysis
31 REE
32 REEe
33 REEm
34 VO2 peak
35 X-ray absorptiometry
36 absorptiometry
37 aerobic fitness
38 aerobic fitness level
39 age
40 analysis
41 bias
42 body composition
43 calculation of REE
44 calculations
45 categories
46 categories of age
47 components
48 composition
49 differences
50 different aerobic fitness levels
51 distribution
52 dual-energy X-ray absorptiometry
53 elderly women
54 energy expenditure
55 expenditure
56 fitness
57 fitness level
58 group
59 higher fitness
60 intercept
61 levels
62 lines
63 lower fitness
64 magnitude
65 measurements
66 metabolic rate
67 method
68 organ components
69 organ weights
70 oxygen uptake
71 peak
72 peak oxygen uptake
73 possibility
74 rate
75 regional body composition
76 regression line
77 remarkable differences
78 results
79 significant differences
80 slope
81 subjects
82 sum
83 units
84 uptake
85 weight
86 women
87 young women
88 younger group
89 schema:name Resting energy expenditure can be assessed by dual-energy X-ray absorptiometry in women regardless of age and fitness
90 schema:pagination 529-535
91 schema:productId N53f08e8a88e04e19b5e75c7cfd462f02
92 N55a52d3dd9224c73b38156a320a3f6d7
93 Nb2984f0f2be64a91bff0cec4f438bc97
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002092875
95 https://doi.org/10.1038/sj.ejcn.1602980
96 schema:sdDatePublished 2022-06-01T22:08
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N9a4801b3bc4d4f19aac517c8b4a0b209
99 schema:url https://doi.org/10.1038/sj.ejcn.1602980
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N027dea4993a944b48ef23ae19d348a56 rdf:first sg:person.01122201430.18
104 rdf:rest N9892451f205f4dcdb9d9f94820b844bb
105 N12b123df77474aef8440a5d479af9804 rdf:first sg:person.01100642414.49
106 rdf:rest N9b0d0f671f5a49ba8d26de0ad1e84495
107 N148631bc43e94f97b47759a8a00b3fe8 rdf:first sg:person.01372671302.53
108 rdf:rest N45b400bb5b964480a8929b76430697ed
109 N287b66eff9cb432eb5eda09017c0746f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Absorptiometry, Photon
111 rdf:type schema:DefinedTerm
112 N2aa06899618e4874a69c2fb6e8873fe7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Muscle, Skeletal
114 rdf:type schema:DefinedTerm
115 N372e1d19c47448cb97e9d65da679b691 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Aged
117 rdf:type schema:DefinedTerm
118 N39002a4661104cf497729e0282a624be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Young Adult
120 rdf:type schema:DefinedTerm
121 N45b400bb5b964480a8929b76430697ed rdf:first sg:person.01204536710.37
122 rdf:rest N12b123df77474aef8440a5d479af9804
123 N505c2feb8a274842a97900f189ee9a3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Body Composition
125 rdf:type schema:DefinedTerm
126 N53f08e8a88e04e19b5e75c7cfd462f02 schema:name doi
127 schema:value 10.1038/sj.ejcn.1602980
128 rdf:type schema:PropertyValue
129 N55a52d3dd9224c73b38156a320a3f6d7 schema:name pubmed_id
130 schema:value 18285810
131 rdf:type schema:PropertyValue
132 N7b21a6c4fd8e444596c5ea9b1b769859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 N859f320437c346819c01381ead568478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Physical Fitness
137 rdf:type schema:DefinedTerm
138 N9892451f205f4dcdb9d9f94820b844bb rdf:first sg:person.01070223573.09
139 rdf:rest Nd6b5f8c6f9444e88b3c7acdb7582f7c6
140 N9a29b0385c464d958c39751d48663b43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Body Weight
142 rdf:type schema:DefinedTerm
143 N9a4801b3bc4d4f19aac517c8b4a0b209 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 N9b0d0f671f5a49ba8d26de0ad1e84495 rdf:first sg:person.01151612401.23
146 rdf:rest N027dea4993a944b48ef23ae19d348a56
147 Na8705f07252045b9a278c4d64f06de33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Adult
149 rdf:type schema:DefinedTerm
150 Nac82275b27444448919bd1b9906a31bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Middle Aged
152 rdf:type schema:DefinedTerm
153 Nad1a99c7300c41f48e27cff931f5c420 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Aging
155 rdf:type schema:DefinedTerm
156 Nb2984f0f2be64a91bff0cec4f438bc97 schema:name dimensions_id
157 schema:value pub.1002092875
158 rdf:type schema:PropertyValue
159 Nb8d6e78e8c66429b96a090975f1540f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Age Factors
161 rdf:type schema:DefinedTerm
162 Nc590b13ddbc24e11b47781f5090a7de6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Basal Metabolism
164 rdf:type schema:DefinedTerm
165 Nca78a9c6328447fbae38815438cd8a93 schema:issueNumber 4
166 rdf:type schema:PublicationIssue
167 Nd6b5f8c6f9444e88b3c7acdb7582f7c6 rdf:first sg:person.01342304226.79
168 rdf:rest rdf:nil
169 Nd6d0147890c940db8b631d6b71c3de11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Reproducibility of Results
171 rdf:type schema:DefinedTerm
172 Nd759d50d3bc848e3ac241b19ab466c5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Bone Density
174 rdf:type schema:DefinedTerm
175 Ndf44065880164b218ebdd8cb6824d3cc rdf:first sg:person.01256442702.79
176 rdf:rest N148631bc43e94f97b47759a8a00b3fe8
177 Ned8031c633f94245bb62e38c1f0ed784 schema:volumeNumber 63
178 rdf:type schema:PublicationVolume
179 Nfbf360b2f1c24b5a84a0885f47cc2b1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Female
181 rdf:type schema:DefinedTerm
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
186 schema:name Clinical Sciences
187 rdf:type schema:DefinedTerm
188 sg:journal.1097936 schema:issn 0954-3007
189 1476-5640
190 schema:name European Journal of Clinical Nutrition
191 schema:publisher Springer Nature
192 rdf:type schema:Periodical
193 sg:person.01070223573.09 schema:affiliation grid-institutes:grid.482562.f
194 schema:familyName Tabata
195 schema:givenName I
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070223573.09
197 rdf:type schema:Person
198 sg:person.01100642414.49 schema:affiliation grid-institutes:grid.5290.e
199 schema:familyName Sanada
200 schema:givenName K
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49
202 rdf:type schema:Person
203 sg:person.01122201430.18 schema:affiliation grid-institutes:grid.482562.f
204 schema:familyName Miyachi
205 schema:givenName M
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18
207 rdf:type schema:Person
208 sg:person.01151612401.23 schema:affiliation grid-institutes:grid.440953.f
209 schema:familyName Oka
210 schema:givenName J
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151612401.23
212 rdf:type schema:Person
213 sg:person.01204536710.37 schema:affiliation grid-institutes:grid.5290.e
214 schema:familyName Gando
215 schema:givenName Y
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204536710.37
217 rdf:type schema:Person
218 sg:person.01256442702.79 schema:affiliation grid-institutes:grid.5290.e
219 schema:familyName Usui
220 schema:givenName C
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256442702.79
222 rdf:type schema:Person
223 sg:person.01342304226.79 schema:affiliation grid-institutes:grid.5290.e
224 schema:familyName Higuchi
225 schema:givenName M
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342304226.79
227 rdf:type schema:Person
228 sg:person.01372671302.53 schema:affiliation grid-institutes:grid.5290.e
229 schema:familyName Takahashi
230 schema:givenName E
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372671302.53
232 rdf:type schema:Person
233 sg:pub.10.1203/00006450-196705000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031432262
234 https://doi.org/10.1203/00006450-196705000-00005
235 rdf:type schema:CreativeWork
236 grid-institutes:grid.440953.f schema:alternateName Department of Home Economics, Tokyo Kasei University, Tokyo, Japan
237 schema:name Department of Home Economics, Tokyo Kasei University, Tokyo, Japan
238 rdf:type schema:Organization
239 grid-institutes:grid.482562.f schema:alternateName Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan
240 schema:name Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan
241 rdf:type schema:Organization
242 grid-institutes:grid.5290.e schema:alternateName Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan
243 Department of Sport Sciences, Graduate School of Human Sciences, Waseda University, Saitama, Japan
244 Faculty of Sport Sciences, Waseda University, Saitama, Japan
245 schema:name Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan
246 Department of Sport Sciences, Graduate School of Human Sciences, Waseda University, Saitama, Japan
247 Faculty of Sport Sciences, Waseda University, Saitama, Japan
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...