Muscle mass and bone mineral indices: does the normalized bone mineral content differ with age? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-01-23

AUTHORS

K Sanada, M Miyachi, I Tabata, M Miyatani, M Tanimoto, T-w Oh, K Yamamoto, C Usui, E Takahashi, H Kawano, Y Gando, M Higuchi

ABSTRACT

Objective:To investigate the relationships between regional skeletal muscle mass (SM mass) and bone mineral indices and to examine whether bone mineral content (BMC) normalized to SM mass shows a similar decrease with age in young through old age.Subjects/Methods:One hundred and thirty-eight young and postmenopausal women aged 20–76 years participated in this study and were divided into three groups: 61 young women, 49 middle-aged postmenopausal women and 28 older postmenopausal women. Muscle thickness (MTH) was determined by ultrasound, and regional SM mass (arm, trunk and leg) was estimated based on nine sites of MTH. Whole-body and regional lean soft tissue mass (LSTM), bone mineral density (BMD) and BMC (whole body, arms, legs and lumbar spine) were measured using dual-energy X-ray absorptiometry.Results:Ultrasound spectroscopy indicated that SM mass is significantly correlated with site-matched regional bone mineral indices and these relationships correspond to LSTM. The BMC and BMD in older women were significantly lower than those in middle-aged women. When BMC was normalized to site-matched regional SM mass, BMC normalized to SM mass in arm and trunk region were significantly different with age; however, whole-body and leg BMC normalized to SM mass showed no significant difference between middle-aged and older postmenopausal women.Conclusions:The age-related differences in BMC were found to be independent of the ageing of SM mass in the arm and trunk region. However, differences in BMC measures of the leg and whole body were found to correspond to age-related decline of SM mass in postmenopausal women. More... »

PAGES

465-472

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602977

DOI

http://dx.doi.org/10.1038/sj.ejcn.1602977

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030850978

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18212802


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Absorptiometry, Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Physical Fitness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postmenopause", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan", 
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanada", 
        "givenName": "K", 
        "id": "sg:person.01100642414.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan", 
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyachi", 
        "givenName": "M", 
        "id": "sg:person.01122201430.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabata", 
        "givenName": "I", 
        "id": "sg:person.01070223573.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070223573.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyatani", 
        "givenName": "M", 
        "id": "sg:person.01003730251.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003730251.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanimoto", 
        "givenName": "M", 
        "id": "sg:person.01022175110.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022175110.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "T-w", 
        "id": "sg:person.01025765702.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025765702.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482562.f", 
          "name": [
            "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan", 
            "Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "K", 
        "id": "sg:person.01070310310.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070310310.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usui", 
        "givenName": "C", 
        "id": "sg:person.01256442702.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256442702.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ces, Waseda University, Tokorozawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Graduate School of Human Scien", 
            "ces, Waseda University, Tokorozawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "E", 
        "id": "sg:person.01372671302.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372671302.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ces, Waseda University, Tokorozawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Graduate School of Human Scien", 
            "ces, Waseda University, Tokorozawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawano", 
        "givenName": "H", 
        "id": "sg:person.01355040471.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355040471.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ces, Waseda University, Tokorozawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Graduate School of Human Scien", 
            "ces, Waseda University, Tokorozawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gando", 
        "givenName": "Y", 
        "id": "sg:person.01204536710.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204536710.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.5290.e", 
          "name": [
            "Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan", 
            "Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higuchi", 
        "givenName": "M", 
        "id": "sg:person.01342304226.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342304226.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002239900615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035924981", 
          "https://doi.org/10.1007/s002239900615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-003-1034-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051740902", 
          "https://doi.org/10.1007/s00421-003-1034-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100670070009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028628694", 
          "https://doi.org/10.1007/s100670070009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002239900528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008692755", 
          "https://doi.org/10.1007/s002239900528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-005-0061-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002240691", 
          "https://doi.org/10.1007/s00421-005-0061-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00467-004-1465-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027671023", 
          "https://doi.org/10.1007/s00467-004-1465-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-005-1900-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045749211", 
          "https://doi.org/10.1007/s00198-005-1900-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-004-1613-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052590760", 
          "https://doi.org/10.1007/s00198-004-1613-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01-23", 
    "datePublishedReg": "2008-01-23", 
    "description": "Objective:To investigate the relationships between regional skeletal muscle mass (SM mass) and bone mineral indices and to examine whether bone mineral content (BMC) normalized to SM mass shows a similar decrease with age in young through old age.Subjects/Methods:One hundred and thirty-eight young and postmenopausal women aged 20\u201376 years participated in this study and were divided into three groups: 61 young women, 49 middle-aged postmenopausal women and 28 older postmenopausal women. Muscle thickness (MTH) was determined by ultrasound, and regional SM mass (arm, trunk and leg) was estimated based on nine sites of MTH. Whole-body and regional lean soft tissue mass (LSTM), bone mineral density (BMD) and BMC (whole body, arms, legs and lumbar spine) were measured using dual-energy X-ray absorptiometry.Results:Ultrasound spectroscopy indicated that SM mass is significantly correlated with site-matched regional bone mineral indices and these relationships correspond to LSTM. The BMC and BMD in older women were significantly lower than those in middle-aged women. When BMC was normalized to site-matched regional SM mass, BMC normalized to SM mass in arm and trunk region were significantly different with age; however, whole-body and leg BMC normalized to SM mass showed no significant difference between middle-aged and older postmenopausal women.Conclusions:The age-related differences in BMC were found to be independent of the ageing of SM mass in the arm and trunk region. However, differences in BMC measures of the leg and whole body were found to correspond to age-related decline of SM mass in postmenopausal women.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/sj.ejcn.1602977", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "bone mineral content", 
      "bone mineral density", 
      "bone mineral index", 
      "lean soft tissue mass", 
      "older postmenopausal women", 
      "postmenopausal women", 
      "regional SM mass", 
      "muscle thickness", 
      "SM mass", 
      "muscle mass", 
      "leg bone mineral content", 
      "middle-aged postmenopausal women", 
      "soft tissue mass", 
      "middle-aged women", 
      "regional skeletal muscle mass", 
      "skeletal muscle mass", 
      "trunk region", 
      "age-related decline", 
      "mineral density", 
      "age-related differences", 
      "ray absorptiometry", 
      "older women", 
      "tissue mass", 
      "older age", 
      "young women", 
      "BMC measures", 
      "mineral content", 
      "women", 
      "similar decrease", 
      "whole body", 
      "age", 
      "significant differences", 
      "index", 
      "arm", 
      "absorptiometry", 
      "mineral indices", 
      "differences", 
      "ultrasound", 
      "leg", 
      "mass", 
      "group", 
      "years", 
      "aging", 
      "decrease", 
      "decline", 
      "relationship", 
      "study", 
      "measures", 
      "body", 
      "region", 
      "sites", 
      "content", 
      "thickness", 
      "density", 
      "spectroscopy", 
      "ultrasound spectroscopy", 
      "sites of MTH", 
      "regional lean soft tissue mass", 
      "site-matched regional bone mineral indices", 
      "regional bone mineral indices", 
      "site-matched regional SM mass", 
      "normalized bone mineral content"
    ], 
    "name": "Muscle mass and bone mineral indices: does the normalized bone mineral content differ with age?", 
    "pagination": "465-472", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030850978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejcn.1602977"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18212802"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejcn.1602977", 
      "https://app.dimensions.ai/details/publication/pub.1030850978"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_456.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/sj.ejcn.1602977"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602977'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602977'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602977'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602977'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      22 PREDICATES      111 URIs      95 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejcn.1602977 schema:about N04e134e36e5d4b29b3ea9a6a698b7c9e
2 N2c4830780d0844cda1e5597b2212f293
3 N367eb16c31d046d29dbf1b618577857b
4 N3bf09d2127574086a96f6101142c476f
5 N3d1be0dadbcc46ae969278380ad4bc86
6 N40a872c85b7e4478b44935ced1cf76ae
7 N4913e9a793734ee2a5a939f426bf5e6a
8 N5afb0922be4543aeb7d87ed25077a441
9 N69dad6b7f5254114aed5b6078082e095
10 N8046b445a4ed44b3b4ce1f6461f8c653
11 Nb901bb25cc7f458188ab61332fa582b6
12 Nc17c17a2d51d4614a5d7fdf45593f589
13 Nd94ba7ecc2c04614bca7f48bf5525178
14 Nf2b5fbf9feea4e78a135e9c78914734a
15 Nf3a73ec6974146b59ec8d8dbd580a827
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author N26cc945014d747fa86629ef7d82e99d0
19 schema:citation sg:pub.10.1007/s00198-004-1613-6
20 sg:pub.10.1007/s00198-005-1900-x
21 sg:pub.10.1007/s002239900528
22 sg:pub.10.1007/s002239900615
23 sg:pub.10.1007/s00421-003-1034-9
24 sg:pub.10.1007/s00421-005-0061-0
25 sg:pub.10.1007/s00467-004-1465-5
26 sg:pub.10.1007/s100670070009
27 schema:datePublished 2008-01-23
28 schema:datePublishedReg 2008-01-23
29 schema:description Objective:To investigate the relationships between regional skeletal muscle mass (SM mass) and bone mineral indices and to examine whether bone mineral content (BMC) normalized to SM mass shows a similar decrease with age in young through old age.Subjects/Methods:One hundred and thirty-eight young and postmenopausal women aged 20–76 years participated in this study and were divided into three groups: 61 young women, 49 middle-aged postmenopausal women and 28 older postmenopausal women. Muscle thickness (MTH) was determined by ultrasound, and regional SM mass (arm, trunk and leg) was estimated based on nine sites of MTH. Whole-body and regional lean soft tissue mass (LSTM), bone mineral density (BMD) and BMC (whole body, arms, legs and lumbar spine) were measured using dual-energy X-ray absorptiometry.Results:Ultrasound spectroscopy indicated that SM mass is significantly correlated with site-matched regional bone mineral indices and these relationships correspond to LSTM. The BMC and BMD in older women were significantly lower than those in middle-aged women. When BMC was normalized to site-matched regional SM mass, BMC normalized to SM mass in arm and trunk region were significantly different with age; however, whole-body and leg BMC normalized to SM mass showed no significant difference between middle-aged and older postmenopausal women.Conclusions:The age-related differences in BMC were found to be independent of the ageing of SM mass in the arm and trunk region. However, differences in BMC measures of the leg and whole body were found to correspond to age-related decline of SM mass in postmenopausal women.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N4d9125b5e9984c66b8581e0b3f686c4b
34 N9b2cbe8783a24a8cb61f99679449a6e9
35 sg:journal.1097936
36 schema:keywords BMC measures
37 SM mass
38 absorptiometry
39 age
40 age-related decline
41 age-related differences
42 aging
43 arm
44 body
45 bone mineral content
46 bone mineral density
47 bone mineral index
48 content
49 decline
50 decrease
51 density
52 differences
53 group
54 index
55 lean soft tissue mass
56 leg
57 leg bone mineral content
58 mass
59 measures
60 middle-aged postmenopausal women
61 middle-aged women
62 mineral content
63 mineral density
64 mineral indices
65 muscle mass
66 muscle thickness
67 normalized bone mineral content
68 older age
69 older postmenopausal women
70 older women
71 postmenopausal women
72 ray absorptiometry
73 region
74 regional SM mass
75 regional bone mineral indices
76 regional lean soft tissue mass
77 regional skeletal muscle mass
78 relationship
79 significant differences
80 similar decrease
81 site-matched regional SM mass
82 site-matched regional bone mineral indices
83 sites
84 sites of MTH
85 skeletal muscle mass
86 soft tissue mass
87 spectroscopy
88 study
89 thickness
90 tissue mass
91 trunk region
92 ultrasound
93 ultrasound spectroscopy
94 whole body
95 women
96 years
97 young women
98 schema:name Muscle mass and bone mineral indices: does the normalized bone mineral content differ with age?
99 schema:pagination 465-472
100 schema:productId N189bb9e7c79943c6b1bffc589c3d42bb
101 N5009218c99f043e080efc0e2a741c772
102 N6ba8561959904d7685e5ea98f7c6d52f
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030850978
104 https://doi.org/10.1038/sj.ejcn.1602977
105 schema:sdDatePublished 2022-01-01T18:18
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N41933ed13c2e47e69439ab573403523d
108 schema:url https://doi.org/10.1038/sj.ejcn.1602977
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N04e134e36e5d4b29b3ea9a6a698b7c9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Spectrum Analysis
114 rdf:type schema:DefinedTerm
115 N189bb9e7c79943c6b1bffc589c3d42bb schema:name dimensions_id
116 schema:value pub.1030850978
117 rdf:type schema:PropertyValue
118 N26cc945014d747fa86629ef7d82e99d0 rdf:first sg:person.01100642414.49
119 rdf:rest N8176833cbafd4a0bbbdb3b7a7519f963
120 N2c4830780d0844cda1e5597b2212f293 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Aging
122 rdf:type schema:DefinedTerm
123 N3346aeb018f84a5aa893bfec88653704 rdf:first sg:person.01070223573.09
124 rdf:rest N75f5823cdcf241bf81c5f2521fcf2361
125 N367eb16c31d046d29dbf1b618577857b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Physical Fitness
127 rdf:type schema:DefinedTerm
128 N381f652ff4794009ad673e1c6520ef33 rdf:first sg:person.01070310310.60
129 rdf:rest Nb1de8ec8209b45b5a068c11f8cd77780
130 N3bb89756a30b4429a9abd9605cd357da rdf:first sg:person.01025765702.98
131 rdf:rest N381f652ff4794009ad673e1c6520ef33
132 N3bf09d2127574086a96f6101142c476f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Postmenopause
134 rdf:type schema:DefinedTerm
135 N3d1be0dadbcc46ae969278380ad4bc86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Bone Density
137 rdf:type schema:DefinedTerm
138 N3f50494a1192489ba8f1978936f31e2d rdf:first sg:person.01355040471.54
139 rdf:rest Nd40cf297726f4a8e813802a9f8aea04e
140 N40a872c85b7e4478b44935ced1cf76ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Absorptiometry, Photon
142 rdf:type schema:DefinedTerm
143 N41933ed13c2e47e69439ab573403523d schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 N4913e9a793734ee2a5a939f426bf5e6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Middle Aged
147 rdf:type schema:DefinedTerm
148 N4d9125b5e9984c66b8581e0b3f686c4b schema:issueNumber 4
149 rdf:type schema:PublicationIssue
150 N5009218c99f043e080efc0e2a741c772 schema:name doi
151 schema:value 10.1038/sj.ejcn.1602977
152 rdf:type schema:PropertyValue
153 N5afb0922be4543aeb7d87ed25077a441 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Adult
155 rdf:type schema:DefinedTerm
156 N69dad6b7f5254114aed5b6078082e095 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Female
158 rdf:type schema:DefinedTerm
159 N6a7a6cc40f06499294898f44b4d80d57 rdf:first sg:person.01342304226.79
160 rdf:rest rdf:nil
161 N6ba8561959904d7685e5ea98f7c6d52f schema:name pubmed_id
162 schema:value 18212802
163 rdf:type schema:PropertyValue
164 N75f5823cdcf241bf81c5f2521fcf2361 rdf:first sg:person.01003730251.12
165 rdf:rest Ncc57f873ec794c0baa5d64f1d1a283bc
166 N768db80dd7a0497b9e9de490d0b84ef8 rdf:first sg:person.01372671302.53
167 rdf:rest N3f50494a1192489ba8f1978936f31e2d
168 N8046b445a4ed44b3b4ce1f6461f8c653 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Aged
170 rdf:type schema:DefinedTerm
171 N8176833cbafd4a0bbbdb3b7a7519f963 rdf:first sg:person.01122201430.18
172 rdf:rest N3346aeb018f84a5aa893bfec88653704
173 N9b2cbe8783a24a8cb61f99679449a6e9 schema:volumeNumber 63
174 rdf:type schema:PublicationVolume
175 Nb1de8ec8209b45b5a068c11f8cd77780 rdf:first sg:person.01256442702.79
176 rdf:rest N768db80dd7a0497b9e9de490d0b84ef8
177 Nb901bb25cc7f458188ab61332fa582b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Humans
179 rdf:type schema:DefinedTerm
180 Nc17c17a2d51d4614a5d7fdf45593f589 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Body Composition
182 rdf:type schema:DefinedTerm
183 Ncc57f873ec794c0baa5d64f1d1a283bc rdf:first sg:person.01022175110.52
184 rdf:rest N3bb89756a30b4429a9abd9605cd357da
185 Nd40cf297726f4a8e813802a9f8aea04e rdf:first sg:person.01204536710.37
186 rdf:rest N6a7a6cc40f06499294898f44b4d80d57
187 Nd94ba7ecc2c04614bca7f48bf5525178 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Ultrasonography
189 rdf:type schema:DefinedTerm
190 Nf2b5fbf9feea4e78a135e9c78914734a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Young Adult
192 rdf:type schema:DefinedTerm
193 Nf3a73ec6974146b59ec8d8dbd580a827 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Muscle, Skeletal
195 rdf:type schema:DefinedTerm
196 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
197 schema:name Medical and Health Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
200 schema:name Clinical Sciences
201 rdf:type schema:DefinedTerm
202 sg:journal.1097936 schema:issn 0954-3007
203 1476-5640
204 schema:name European Journal of Clinical Nutrition
205 schema:publisher Springer Nature
206 rdf:type schema:Periodical
207 sg:person.01003730251.12 schema:affiliation grid-institutes:grid.482562.f
208 schema:familyName Miyatani
209 schema:givenName M
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003730251.12
211 rdf:type schema:Person
212 sg:person.01022175110.52 schema:affiliation grid-institutes:grid.482562.f
213 schema:familyName Tanimoto
214 schema:givenName M
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022175110.52
216 rdf:type schema:Person
217 sg:person.01025765702.98 schema:affiliation grid-institutes:grid.482562.f
218 schema:familyName Oh
219 schema:givenName T-w
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025765702.98
221 rdf:type schema:Person
222 sg:person.01070223573.09 schema:affiliation grid-institutes:grid.482562.f
223 schema:familyName Tabata
224 schema:givenName I
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070223573.09
226 rdf:type schema:Person
227 sg:person.01070310310.60 schema:affiliation grid-institutes:grid.482562.f
228 schema:familyName Yamamoto
229 schema:givenName K
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070310310.60
231 rdf:type schema:Person
232 sg:person.01100642414.49 schema:affiliation grid-institutes:grid.482562.f
233 schema:familyName Sanada
234 schema:givenName K
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100642414.49
236 rdf:type schema:Person
237 sg:person.01122201430.18 schema:affiliation grid-institutes:grid.482562.f
238 schema:familyName Miyachi
239 schema:givenName M
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122201430.18
241 rdf:type schema:Person
242 sg:person.01204536710.37 schema:affiliation grid-institutes:grid.5290.e
243 schema:familyName Gando
244 schema:givenName Y
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204536710.37
246 rdf:type schema:Person
247 sg:person.01256442702.79 schema:affiliation grid-institutes:grid.5290.e
248 schema:familyName Usui
249 schema:givenName C
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256442702.79
251 rdf:type schema:Person
252 sg:person.01342304226.79 schema:affiliation grid-institutes:grid.5290.e
253 schema:familyName Higuchi
254 schema:givenName M
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342304226.79
256 rdf:type schema:Person
257 sg:person.01355040471.54 schema:affiliation grid-institutes:grid.5290.e
258 schema:familyName Kawano
259 schema:givenName H
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355040471.54
261 rdf:type schema:Person
262 sg:person.01372671302.53 schema:affiliation grid-institutes:grid.5290.e
263 schema:familyName Takahashi
264 schema:givenName E
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372671302.53
266 rdf:type schema:Person
267 sg:pub.10.1007/s00198-004-1613-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052590760
268 https://doi.org/10.1007/s00198-004-1613-6
269 rdf:type schema:CreativeWork
270 sg:pub.10.1007/s00198-005-1900-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045749211
271 https://doi.org/10.1007/s00198-005-1900-x
272 rdf:type schema:CreativeWork
273 sg:pub.10.1007/s002239900528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008692755
274 https://doi.org/10.1007/s002239900528
275 rdf:type schema:CreativeWork
276 sg:pub.10.1007/s002239900615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035924981
277 https://doi.org/10.1007/s002239900615
278 rdf:type schema:CreativeWork
279 sg:pub.10.1007/s00421-003-1034-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740902
280 https://doi.org/10.1007/s00421-003-1034-9
281 rdf:type schema:CreativeWork
282 sg:pub.10.1007/s00421-005-0061-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002240691
283 https://doi.org/10.1007/s00421-005-0061-0
284 rdf:type schema:CreativeWork
285 sg:pub.10.1007/s00467-004-1465-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027671023
286 https://doi.org/10.1007/s00467-004-1465-5
287 rdf:type schema:CreativeWork
288 sg:pub.10.1007/s100670070009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028628694
289 https://doi.org/10.1007/s100670070009
290 rdf:type schema:CreativeWork
291 grid-institutes:grid.482562.f schema:alternateName Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan
292 schema:name Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan
293 Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan
294 rdf:type schema:Organization
295 grid-institutes:grid.5290.e schema:alternateName Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
296 ces, Waseda University, Tokorozawa, Japan
297 schema:name Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan
298 Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
299 Graduate School of Human Scien
300 ces, Waseda University, Tokorozawa, Japan
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...