Leptin a new biological marker for evaluating malnutrition in elderly patients View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-05

AUTHORS

O Bouillanne, J-L Golmard, C Coussieu, M Noël, D Durand, F Piette, V Nivet-Antoine

ABSTRACT

BACKGROUND: There is no single universally accepted biochemical marker of nutritional status in the elderly. Many markers are affected by non-nutritional factors. OBJECTIVE: The purpose of this study was to determine the biological parameters best related to anthropometric markers of malnutrition in an elderly polypathological population, and determine cutoff values for these potential parameters to diagnose malnutrition. DESIGN: This prospective study enrolled 116 elderly hospitalized patients and 76 elderly outpatients. Nutritional status (albumin, transthyretin, body mass index (BMI), skinfold thickness) and biological parameters (leptin, insulin-like growth factor-1 (IGF-1), IGF binding protein-1 (IGFBP-1), IGFBP-3, C-reactive protein (CRP), orosomucoid) were assessed. We defined malnutrition according to the lowest quartile of BMI and skinfold thickness measured in a large healthy elderly French sample population. RESULTS: In this sample of elderly patients (age: 85+/-7 years old), leptin concentration was the only biological parameter significantly related to nutrition status. Independent correlations were found between leptin concentration and BMI, skinfold thickness and sex. The relationship between nutritional status and leptin concentration is significantly different in each sex: the more the patients are undernourished, the lower the leptin concentration in both sexes. The optimal leptin cutoff value for the diagnosis of malnutrition in this population was 4 microg/l in men (sensitivity 0.89, specificity 0.82) and 6.48 microg/l in women (sensitivity 0.90, specificity 0.83). CONCLUSION: Leptin concentration is highly correlated with anthropometric data whereas albumin or transthyretin are known to be also influenced by morbidity and inflammatory conditions. Serum leptin concentration could be used for nutritional assessment in elderly patients with acute diseases. More... »

PAGES

1602572

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602572

DOI

http://dx.doi.org/10.1038/sj.ejcn.1602572

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049556449

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17151588


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acute Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geriatric Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Status", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leptin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Malnutrition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nutrition Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nutritional Status", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serum Albumin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skinfold Thickness", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Assistance Publique -Hopitaux De Paris", 
          "id": "https://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Service de G\u00e9rontologie 2, H\u00f4pital Emile-Roux, Assistance Publique \u2013 H\u00f4pitaux de Paris (AP-HP), Limeil-Br\u00e9vannes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouillanne", 
        "givenName": "O", 
        "id": "sg:person.0766237236.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766237236.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Service de Biostatistiques, Universit\u00e9 Paris 6, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golmard", 
        "givenName": "J-L", 
        "id": "sg:person.01173417137.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173417137.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Service de Biochimie m\u00e9dicale, H\u00f4pital H\u00f4tel-Dieu, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coussieu", 
        "givenName": "C", 
        "id": "sg:person.01113252472.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113252472.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Robert Debr\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Service de Biochimie Endocrinienne, H\u00f4pital Robert-Debr\u00e9, AP-HP, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "No\u00ebl", 
        "givenName": "M", 
        "id": "sg:person.01117377753.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117377753.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Descartes University", 
          "id": "https://www.grid.ac/institutes/grid.10992.33", 
          "name": [
            "Service de Biochimie, H\u00f4pital Charles-Foix, AP-HP, Universit\u00e9 Paris 5, Ivry sur Seine, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durand", 
        "givenName": "D", 
        "id": "sg:person.0715016302.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715016302.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Service de M\u00e9decine Interne et G\u00e9rontologie, H\u00f4pital Charles-Foix, AP-HP, Universit\u00e9 Paris 6, Ivry sur Seine, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "F", 
        "id": "sg:person.01346140570.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346140570.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Descartes University", 
          "id": "https://www.grid.ac/institutes/grid.10992.33", 
          "name": [
            "Service de Biochimie, H\u00f4pital Charles-Foix, AP-HP, Universit\u00e9 Paris 5, Ivry sur Seine, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nivet-Antoine", 
        "givenName": "V", 
        "id": "sg:person.01304770161.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304770161.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1210/jc.2004-0762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001806597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1440283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004915787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1440283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004915787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1440283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004915787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0899-9007(02)01012-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009971849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0899-9007(02)01012-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009971849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2796.1997.00216.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013068164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/pns19990006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014623912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/pns19990006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014623912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2265.1999.00741.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015470378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.18.2.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015824709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-5614(03)00098-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017861270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-5614(03)00098-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017861270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19940135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025725964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19940135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025725964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0272-6386(02)70081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027844151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1532-5415.1985.tb02276.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028168268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.166.8.860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030540091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nupar.2003.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-5614(98)80058-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033804884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-5614(99)80076-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033989272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-8223(01)00008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034967624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-8223(01)00008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034967624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-9842(02)00177-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039193578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0899-9007(99)00177-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040641057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1054/clnu.2000.0124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042413145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2004-1782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045647337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/27376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048314480", 
          "https://doi.org/10.1038/27376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/27376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048314480", 
          "https://doi.org/10.1038/27376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2003-030967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064287083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.85.5.1770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064301379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jcem.85.5.6572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064323513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.47.6.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070743872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.2000.279.1.e124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074667039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074783860", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/51.5.749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078307169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079165762", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05", 
    "datePublishedReg": "2007-05-01", 
    "description": "BACKGROUND: There is no single universally accepted biochemical marker of nutritional status in the elderly. Many markers are affected by non-nutritional factors.\nOBJECTIVE: The purpose of this study was to determine the biological parameters best related to anthropometric markers of malnutrition in an elderly polypathological population, and determine cutoff values for these potential parameters to diagnose malnutrition.\nDESIGN: This prospective study enrolled 116 elderly hospitalized patients and 76 elderly outpatients. Nutritional status (albumin, transthyretin, body mass index (BMI), skinfold thickness) and biological parameters (leptin, insulin-like growth factor-1 (IGF-1), IGF binding protein-1 (IGFBP-1), IGFBP-3, C-reactive protein (CRP), orosomucoid) were assessed. We defined malnutrition according to the lowest quartile of BMI and skinfold thickness measured in a large healthy elderly French sample population.\nRESULTS: In this sample of elderly patients (age: 85+/-7 years old), leptin concentration was the only biological parameter significantly related to nutrition status. Independent correlations were found between leptin concentration and BMI, skinfold thickness and sex. The relationship between nutritional status and leptin concentration is significantly different in each sex: the more the patients are undernourished, the lower the leptin concentration in both sexes. The optimal leptin cutoff value for the diagnosis of malnutrition in this population was 4 microg/l in men (sensitivity 0.89, specificity 0.82) and 6.48 microg/l in women (sensitivity 0.90, specificity 0.83).\nCONCLUSION: Leptin concentration is highly correlated with anthropometric data whereas albumin or transthyretin are known to be also influenced by morbidity and inflammatory conditions. Serum leptin concentration could be used for nutritional assessment in elderly patients with acute diseases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.ejcn.1602572", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Leptin a new biological marker for evaluating malnutrition in elderly patients", 
    "pagination": "1602572", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec1303e6c8d943653433558a3b1408bb1cb131369060a4df23248dac0a4995d4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17151588"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8804070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejcn.1602572"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049556449"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejcn.1602572", 
      "https://app.dimensions.ai/details/publication/pub.1049556449"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/1602572"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602572'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602572'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602572'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1602572'


 

This table displays all metadata directly associated to this object as RDF triples.

297 TRIPLES      21 PREDICATES      80 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejcn.1602572 schema:about N04cb7aa34fb140cab7e9a8d7def8239a
2 N06d69d11d94c4f92b1ba4220e0ca309e
3 N0ae10433b3f549618b5d0c627bc52160
4 N0b741b587a694ce191bbc3e301f17d09
5 N2156f86f1a7b4e288730b125cc1cb365
6 N23b5d129521e426982ad1cac7b866b79
7 N2be3a87a02c64c2e8696bfdaffe9c2b7
8 N32808899ccc347b0bdce2aab05800ca0
9 N3ab49f7545d54cd2a807535f7a07ab8b
10 N42a4875bb9a44c76849f554eacdee1ec
11 N4b85d5fd9a5849e4a87616878570b265
12 N508ac588db3242b2ab13de28641a696b
13 N518912db62524739aa25c211764c48bb
14 N608b710bb3ce4313929f1a34cad35d4f
15 N7492a1ab48e7494fa90bb3b5a3c26b08
16 N9efbcbb9ddf94c6aa5b1953a5f5c2951
17 Nb3a8188e6b3f402c8e462176e380a61c
18 Nb8d1547c37e34474b8b2761e90a45158
19 Nd304bccb244d4f30b54f323cdcf360c8
20 Nde75e21117b3478e880322e759242b74
21 Nefb5b06ddad44b609abad931f92cc026
22 Nf572f5572f6b43fbbddb12d687ef8830
23 anzsrc-for:11
24 anzsrc-for:1103
25 schema:author Nc4555600aa6f403ba974c5775a699111
26 schema:citation sg:pub.10.1038/27376
27 https://app.dimensions.ai/details/publication/pub.1074783860
28 https://app.dimensions.ai/details/publication/pub.1079165762
29 https://doi.org/10.1001/archinte.166.8.860
30 https://doi.org/10.1016/j.nupar.2003.09.004
31 https://doi.org/10.1016/s0002-8223(01)00008-6
32 https://doi.org/10.1016/s0261-5614(03)00098-0
33 https://doi.org/10.1016/s0261-5614(98)80058-7
34 https://doi.org/10.1016/s0261-5614(99)80076-4
35 https://doi.org/10.1016/s0272-6386(02)70081-4
36 https://doi.org/10.1016/s0899-9007(02)01012-2
37 https://doi.org/10.1016/s0899-9007(99)00177-x
38 https://doi.org/10.1016/s1388-9842(02)00177-0
39 https://doi.org/10.1046/j.1365-2265.1999.00741.x
40 https://doi.org/10.1046/j.1365-2796.1997.00216.x
41 https://doi.org/10.1054/clnu.2000.0124
42 https://doi.org/10.1079/bjn19940135
43 https://doi.org/10.1079/pns19990006
44 https://doi.org/10.1093/ajcn/51.5.749
45 https://doi.org/10.1111/j.1532-5415.1985.tb02276.x
46 https://doi.org/10.1152/ajpendo.2000.279.1.e124
47 https://doi.org/10.1161/01.atv.18.2.277
48 https://doi.org/10.1210/jc.2003-030967
49 https://doi.org/10.1210/jc.2004-0762
50 https://doi.org/10.1210/jc.2004-1782
51 https://doi.org/10.1210/jc.85.5.1770
52 https://doi.org/10.1210/jcem.85.5.6572
53 https://doi.org/10.1530/eje.0.1440283
54 https://doi.org/10.2337/diabetes.47.6.913
55 schema:datePublished 2007-05
56 schema:datePublishedReg 2007-05-01
57 schema:description BACKGROUND: There is no single universally accepted biochemical marker of nutritional status in the elderly. Many markers are affected by non-nutritional factors. OBJECTIVE: The purpose of this study was to determine the biological parameters best related to anthropometric markers of malnutrition in an elderly polypathological population, and determine cutoff values for these potential parameters to diagnose malnutrition. DESIGN: This prospective study enrolled 116 elderly hospitalized patients and 76 elderly outpatients. Nutritional status (albumin, transthyretin, body mass index (BMI), skinfold thickness) and biological parameters (leptin, insulin-like growth factor-1 (IGF-1), IGF binding protein-1 (IGFBP-1), IGFBP-3, C-reactive protein (CRP), orosomucoid) were assessed. We defined malnutrition according to the lowest quartile of BMI and skinfold thickness measured in a large healthy elderly French sample population. RESULTS: In this sample of elderly patients (age: 85+/-7 years old), leptin concentration was the only biological parameter significantly related to nutrition status. Independent correlations were found between leptin concentration and BMI, skinfold thickness and sex. The relationship between nutritional status and leptin concentration is significantly different in each sex: the more the patients are undernourished, the lower the leptin concentration in both sexes. The optimal leptin cutoff value for the diagnosis of malnutrition in this population was 4 microg/l in men (sensitivity 0.89, specificity 0.82) and 6.48 microg/l in women (sensitivity 0.90, specificity 0.83). CONCLUSION: Leptin concentration is highly correlated with anthropometric data whereas albumin or transthyretin are known to be also influenced by morbidity and inflammatory conditions. Serum leptin concentration could be used for nutritional assessment in elderly patients with acute diseases.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N8101e0db5dab4165a7efd58142ab9dd4
62 Na36fb54072ba4ce99604ac94eee50f87
63 sg:journal.1097936
64 schema:name Leptin a new biological marker for evaluating malnutrition in elderly patients
65 schema:pagination 1602572
66 schema:productId N365747e652fd44349457f96140bef2d7
67 N4efee63aa19c4b35b161d3e3606d7db0
68 N6b10da2929b6473c98b3a703e18fe36e
69 Nad88099b9cc84912a69c7eac70d8474f
70 Nc3b4e44cd1a649cf84c4132db2716bf1
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049556449
72 https://doi.org/10.1038/sj.ejcn.1602572
73 schema:sdDatePublished 2019-04-11T11:53
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N31532c80f69d4748b8a04fdf803bbc99
76 schema:url http://www.nature.com/articles/1602572
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N04cb7aa34fb140cab7e9a8d7def8239a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Prospective Studies
82 rdf:type schema:DefinedTerm
83 N06d69d11d94c4f92b1ba4220e0ca309e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Biomarkers
85 rdf:type schema:DefinedTerm
86 N0ae10433b3f549618b5d0c627bc52160 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Sex Factors
88 rdf:type schema:DefinedTerm
89 N0b741b587a694ce191bbc3e301f17d09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Reference Standards
91 rdf:type schema:DefinedTerm
92 N12820cceefc5430f9120ec5b38172603 rdf:first sg:person.01346140570.68
93 rdf:rest N4f41d92fab714d30ae0051caa9c06c8d
94 N2156f86f1a7b4e288730b125cc1cb365 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Acute Disease
96 rdf:type schema:DefinedTerm
97 N23b5d129521e426982ad1cac7b866b79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Male
99 rdf:type schema:DefinedTerm
100 N2be3a87a02c64c2e8696bfdaffe9c2b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Aged, 80 and over
102 rdf:type schema:DefinedTerm
103 N31532c80f69d4748b8a04fdf803bbc99 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N32808899ccc347b0bdce2aab05800ca0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Female
107 rdf:type schema:DefinedTerm
108 N365747e652fd44349457f96140bef2d7 schema:name readcube_id
109 schema:value ec1303e6c8d943653433558a3b1408bb1cb131369060a4df23248dac0a4995d4
110 rdf:type schema:PropertyValue
111 N3ab49f7545d54cd2a807535f7a07ab8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Sensitivity and Specificity
113 rdf:type schema:DefinedTerm
114 N3b47ff358cc841c79cb617edbcef9d6c schema:name Service de Biochimie médicale, Hôpital Hôtel-Dieu, AP-HP, Paris, France
115 rdf:type schema:Organization
116 N42a4875bb9a44c76849f554eacdee1ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 N4b85d5fd9a5849e4a87616878570b265 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Skinfold Thickness
121 rdf:type schema:DefinedTerm
122 N4efee63aa19c4b35b161d3e3606d7db0 schema:name dimensions_id
123 schema:value pub.1049556449
124 rdf:type schema:PropertyValue
125 N4f41d92fab714d30ae0051caa9c06c8d rdf:first sg:person.01304770161.77
126 rdf:rest rdf:nil
127 N508ac588db3242b2ab13de28641a696b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Nutrition Assessment
129 rdf:type schema:DefinedTerm
130 N518912db62524739aa25c211764c48bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Case-Control Studies
132 rdf:type schema:DefinedTerm
133 N608b710bb3ce4313929f1a34cad35d4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Serum Albumin
135 rdf:type schema:DefinedTerm
136 N69ebe3b92add4b45b98a8fb5a0af8c61 rdf:first sg:person.0715016302.24
137 rdf:rest N12820cceefc5430f9120ec5b38172603
138 N6b10da2929b6473c98b3a703e18fe36e schema:name doi
139 schema:value 10.1038/sj.ejcn.1602572
140 rdf:type schema:PropertyValue
141 N7492a1ab48e7494fa90bb3b5a3c26b08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Leptin
143 rdf:type schema:DefinedTerm
144 N8101e0db5dab4165a7efd58142ab9dd4 schema:issueNumber 5
145 rdf:type schema:PublicationIssue
146 N9d57a1bb4e42486e848f438d60ccbba2 rdf:first sg:person.01173417137.58
147 rdf:rest Nef4e221454da4ee3ae10b8e1357f981a
148 N9efbcbb9ddf94c6aa5b1953a5f5c2951 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Diagnosis, Differential
150 rdf:type schema:DefinedTerm
151 Na36fb54072ba4ce99604ac94eee50f87 schema:volumeNumber 61
152 rdf:type schema:PublicationVolume
153 Nad88099b9cc84912a69c7eac70d8474f schema:name pubmed_id
154 schema:value 17151588
155 rdf:type schema:PropertyValue
156 Nb3a8188e6b3f402c8e462176e380a61c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Reference Values
158 rdf:type schema:DefinedTerm
159 Nb8d1547c37e34474b8b2761e90a45158 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Body Mass Index
161 rdf:type schema:DefinedTerm
162 Nc3b4e44cd1a649cf84c4132db2716bf1 schema:name nlm_unique_id
163 schema:value 8804070
164 rdf:type schema:PropertyValue
165 Nc4555600aa6f403ba974c5775a699111 rdf:first sg:person.0766237236.70
166 rdf:rest N9d57a1bb4e42486e848f438d60ccbba2
167 Nd304bccb244d4f30b54f323cdcf360c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Health Status
169 rdf:type schema:DefinedTerm
170 Nde75e21117b3478e880322e759242b74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Malnutrition
172 rdf:type schema:DefinedTerm
173 Nef4e221454da4ee3ae10b8e1357f981a rdf:first sg:person.01113252472.18
174 rdf:rest Nf8cd00186f4845e9a4d7252d2c2c65f0
175 Nefb5b06ddad44b609abad931f92cc026 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Nutritional Status
177 rdf:type schema:DefinedTerm
178 Nf572f5572f6b43fbbddb12d687ef8830 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Geriatric Assessment
180 rdf:type schema:DefinedTerm
181 Nf8cd00186f4845e9a4d7252d2c2c65f0 rdf:first sg:person.01117377753.44
182 rdf:rest N69ebe3b92add4b45b98a8fb5a0af8c61
183 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
184 schema:name Medical and Health Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
187 schema:name Clinical Sciences
188 rdf:type schema:DefinedTerm
189 sg:journal.1097936 schema:issn 0954-3007
190 1476-5640
191 schema:name European Journal of Clinical Nutrition
192 rdf:type schema:Periodical
193 sg:person.01113252472.18 schema:affiliation N3b47ff358cc841c79cb617edbcef9d6c
194 schema:familyName Coussieu
195 schema:givenName C
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113252472.18
197 rdf:type schema:Person
198 sg:person.01117377753.44 schema:affiliation https://www.grid.ac/institutes/grid.413235.2
199 schema:familyName Noël
200 schema:givenName M
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117377753.44
202 rdf:type schema:Person
203 sg:person.01173417137.58 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
204 schema:familyName Golmard
205 schema:givenName J-L
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173417137.58
207 rdf:type schema:Person
208 sg:person.01304770161.77 schema:affiliation https://www.grid.ac/institutes/grid.10992.33
209 schema:familyName Nivet-Antoine
210 schema:givenName V
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304770161.77
212 rdf:type schema:Person
213 sg:person.01346140570.68 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
214 schema:familyName Piette
215 schema:givenName F
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346140570.68
217 rdf:type schema:Person
218 sg:person.0715016302.24 schema:affiliation https://www.grid.ac/institutes/grid.10992.33
219 schema:familyName Durand
220 schema:givenName D
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715016302.24
222 rdf:type schema:Person
223 sg:person.0766237236.70 schema:affiliation https://www.grid.ac/institutes/grid.50550.35
224 schema:familyName Bouillanne
225 schema:givenName O
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766237236.70
227 rdf:type schema:Person
228 sg:pub.10.1038/27376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048314480
229 https://doi.org/10.1038/27376
230 rdf:type schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1074783860 schema:CreativeWork
232 https://app.dimensions.ai/details/publication/pub.1079165762 schema:CreativeWork
233 https://doi.org/10.1001/archinte.166.8.860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030540091
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.nupar.2003.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639440
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s0002-8223(01)00008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034967624
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0261-5614(03)00098-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017861270
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/s0261-5614(98)80058-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033804884
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/s0261-5614(99)80076-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033989272
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/s0272-6386(02)70081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027844151
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/s0899-9007(02)01012-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009971849
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/s0899-9007(99)00177-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040641057
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/s1388-9842(02)00177-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039193578
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1046/j.1365-2265.1999.00741.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015470378
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1046/j.1365-2796.1997.00216.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013068164
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1054/clnu.2000.0124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042413145
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1079/bjn19940135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025725964
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1079/pns19990006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014623912
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/ajcn/51.5.749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078307169
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1111/j.1532-5415.1985.tb02276.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028168268
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1152/ajpendo.2000.279.1.e124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074667039
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1161/01.atv.18.2.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015824709
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1210/jc.2003-030967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064287083
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1210/jc.2004-0762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001806597
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1210/jc.2004-1782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045647337
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1210/jc.85.5.1770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064301379
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1210/jcem.85.5.6572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064323513
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1530/eje.0.1440283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004915787
282 rdf:type schema:CreativeWork
283 https://doi.org/10.2337/diabetes.47.6.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070743872
284 rdf:type schema:CreativeWork
285 https://www.grid.ac/institutes/grid.10992.33 schema:alternateName Paris Descartes University
286 schema:name Service de Biochimie, Hôpital Charles-Foix, AP-HP, Université Paris 5, Ivry sur Seine, France
287 rdf:type schema:Organization
288 https://www.grid.ac/institutes/grid.413235.2 schema:alternateName Hôpital Robert Debré
289 schema:name Service de Biochimie Endocrinienne, Hôpital Robert-Debré, AP-HP, Paris, France
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
292 schema:name Service de Biostatistiques, Université Paris 6, Paris, France
293 Service de Médecine Interne et Gérontologie, Hôpital Charles-Foix, AP-HP, Université Paris 6, Ivry sur Seine, France
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.50550.35 schema:alternateName Assistance Publique -Hopitaux De Paris
296 schema:name Service de Gérontologie 2, Hôpital Emile-Roux, Assistance Publique – Hôpitaux de Paris (AP-HP), Limeil-Brévannes, France
297 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...