Soyfood consumption and risk of glycosuria: a cross-sectional study within the Shanghai Women's Health Study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-04

AUTHORS

G Yang, XO Shu, F Jin, T Elasy, H L Li, Q Li, F Huang, X L Zhang, Y T Gao, W Zheng

ABSTRACT

OBJECTIVE: To assess the association between soyfood intake and risk of glycosuria. DESIGN AND METHODS: A cross-sectional study was conducted among participants of the Shanghai Women's Health Study, a population-based cohort study of women aged 40-70 y. Information on usual intake of soyfoods was obtained at baseline survey through an in-person interview using a validated food-frequency questionnaire. Included in this study were 39,385 cohort members screened for diabetes at the baseline survey and free of previously diagnosed diabetes, cardiovascular diseases, kidney diseases, and cancer. There were 323 women who tested positive for urine glucose. Odds ratios (ORs) and 95% confidence intervals (CIs) were employed to measure the association between soyfood intake and glycosuria using unconditional logistic regression. SETTING: Urban communities of Shanghai, China. RESULTS: Overall, soyfood intake was not related to the risk of glycosuria. Among postmenopausal women, however, intake of tofu and other soy products was inversely associated with risk of glycosuria after adjustment for potential confounders. The ORs across quintiles of intake were 1.0, 0.75 (95% CI=0.47-1.20), 0.79 (95% CI=0.51-1.25), 0.53 (95% CI=0.32-0.88), and 0.51 (95% CI=0.26-0.98; P for trend=0.05). Further analyses showed that the inverse association was primarily confined to postmenopausal women with a body mass index (BMI) of <25 kg/m2. The adjusted OR comparing the extreme quintiles was 0.36 (95% CI=0.13-0.97; P for trend=0.004). CONCLUSIONS: Soyfoods may play a role in the development of glycosuria, an important indicator of diabetes, among postmenopausal women with a low BMI. More... »

PAGES

615

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601855

DOI

http://dx.doi.org/10.1038/sj.ejcn.1601855

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051263504

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15042129


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Intake", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycosuria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soy Foods", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urban Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Women's Health", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Center for Health Service Research, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "G", 
        "id": "sg:person.016166735457.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016166735457.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Center for Health Service Research, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shu", 
        "givenName": "XO", 
        "id": "sg:person.016560013412.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560013412.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.419087.3", 
          "name": [
            "Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "F", 
        "id": "sg:person.01114040442.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114040442.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Center for Health Service Research, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elasy", 
        "givenName": "T", 
        "id": "sg:person.016657760767.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016657760767.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.419087.3", 
          "name": [
            "Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "H L", 
        "id": "sg:person.0625153671.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625153671.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.419087.3", 
          "name": [
            "Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Q", 
        "id": "sg:person.0664541325.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664541325.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.419087.3", 
          "name": [
            "Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "F", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Center for Health Service Research, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "X L", 
        "id": "sg:person.01056021632.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056021632.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Cancer Institute", 
          "id": "https://www.grid.ac/institutes/grid.419087.3", 
          "name": [
            "Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Y T", 
        "id": "sg:person.010312422777.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010312422777.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Center for Health Service Research, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "W", 
        "id": "sg:person.016425765167.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425765167.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3109/07853899709113696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001602430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.24.2.228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002944147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9150(86)90098-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007661480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0026-0495(97)90016-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011870813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8227(01)00277-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020466329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022526943", 
          "https://doi.org/10.1038/sj.ejcn.1601738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022526943", 
          "https://doi.org/10.1038/sj.ejcn.1601738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.25.10.1709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030298575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1600993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033334907", 
          "https://doi.org/10.1038/sj.ejcn.1600993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1600993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033334907", 
          "https://doi.org/10.1038/sj.ejcn.1600993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9150(85)90013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046570096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9150(85)90013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046570096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2362.1993.tb00792.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047671896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs0830489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056726969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs0830489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056726969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.85.8.2797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064301505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.18.8.1104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070746805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.20.4.645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070747660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.2000.278.3.e491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074602616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/131.4.1202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074793944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074807125", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajhp/58.8.663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074807125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajhp/58.8.663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074807125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajhp/58.8.663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074807125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075060447", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/76.6.1191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075195874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/39.1.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081676938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/127.6.1077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083103615"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04", 
    "datePublishedReg": "2004-04-01", 
    "description": "OBJECTIVE: To assess the association between soyfood intake and risk of glycosuria.\nDESIGN AND METHODS: A cross-sectional study was conducted among participants of the Shanghai Women's Health Study, a population-based cohort study of women aged 40-70 y. Information on usual intake of soyfoods was obtained at baseline survey through an in-person interview using a validated food-frequency questionnaire. Included in this study were 39,385 cohort members screened for diabetes at the baseline survey and free of previously diagnosed diabetes, cardiovascular diseases, kidney diseases, and cancer. There were 323 women who tested positive for urine glucose. Odds ratios (ORs) and 95% confidence intervals (CIs) were employed to measure the association between soyfood intake and glycosuria using unconditional logistic regression.\nSETTING: Urban communities of Shanghai, China.\nRESULTS: Overall, soyfood intake was not related to the risk of glycosuria. Among postmenopausal women, however, intake of tofu and other soy products was inversely associated with risk of glycosuria after adjustment for potential confounders. The ORs across quintiles of intake were 1.0, 0.75 (95% CI=0.47-1.20), 0.79 (95% CI=0.51-1.25), 0.53 (95% CI=0.32-0.88), and 0.51 (95% CI=0.26-0.98; P for trend=0.05). Further analyses showed that the inverse association was primarily confined to postmenopausal women with a body mass index (BMI) of <25 kg/m2. The adjusted OR comparing the extreme quintiles was 0.36 (95% CI=0.13-0.97; P for trend=0.004).\nCONCLUSIONS: Soyfoods may play a role in the development of glycosuria, an important indicator of diabetes, among postmenopausal women with a low BMI.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.ejcn.1601855", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2472684", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Soyfood consumption and risk of glycosuria: a cross-sectional study within the Shanghai Women's Health Study", 
    "pagination": "615", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f432c626e5d38adb423be064876bfa6994c4fd2b8748648b858bc76a798aecb5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15042129"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8804070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejcn.1601855"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051263504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejcn.1601855", 
      "https://app.dimensions.ai/details/publication/pub.1051263504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118336_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/1601855"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601855'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601855'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601855'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601855'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      68 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejcn.1601855 schema:about N029bc904e6a84de5ab3c770b07975c7a
2 N0403f676abf84973b97d36ff7c6d237b
3 N0afa41ff65ba42b1b48ba190c3cf511c
4 N174c86bfb0834a448bc5651ce2d8d3a8
5 N1be7f48bf53741b1bde9389edbf04f96
6 N259510bfc5a74847a3841626ae103d1d
7 N3040e67107e3486fa382e84294d6c716
8 N3b90596af1374ef291352a287e41dbb3
9 N4241ae6fdfb1477181019c4338f6d66b
10 N51ac4a8f6e524a56b7d15fea0681e442
11 N697208e6edc944df8e3503b30bdecb7d
12 N70e341e099424f518fb98f7612ef9b1d
13 N7415d212ce8d439fb6b4259d8aefff69
14 N76a34ac343aa49228709473cdc4ff6d1
15 N9a48474f9c2b4d9c8ed9a533d1321706
16 Ncc79621ae33145a2b8c3ad55e442f0ea
17 Nd18df60936c9485d9ebaebb5ac51fcb5
18 anzsrc-for:11
19 anzsrc-for:1117
20 schema:author Nf3709c7596624705b7183800cb0b78fe
21 schema:citation sg:pub.10.1038/sj.ejcn.1600993
22 sg:pub.10.1038/sj.ejcn.1601738
23 https://app.dimensions.ai/details/publication/pub.1074807125
24 https://app.dimensions.ai/details/publication/pub.1075060447
25 https://doi.org/10.1016/0021-9150(85)90013-9
26 https://doi.org/10.1016/0021-9150(86)90098-5
27 https://doi.org/10.1016/s0026-0495(97)90016-0
28 https://doi.org/10.1016/s0168-8227(01)00277-7
29 https://doi.org/10.1042/cs0830489
30 https://doi.org/10.1093/ajcn/39.1.25
31 https://doi.org/10.1093/ajcn/76.6.1191
32 https://doi.org/10.1093/ajhp/58.8.663
33 https://doi.org/10.1093/jn/127.6.1077
34 https://doi.org/10.1093/jn/131.4.1202
35 https://doi.org/10.1111/j.1365-2362.1993.tb00792.x
36 https://doi.org/10.1152/ajpendo.2000.278.3.e491
37 https://doi.org/10.1210/jc.85.8.2797
38 https://doi.org/10.2337/diacare.18.8.1104
39 https://doi.org/10.2337/diacare.20.4.645
40 https://doi.org/10.2337/diacare.24.2.228
41 https://doi.org/10.2337/diacare.25.10.1709
42 https://doi.org/10.3109/07853899709113696
43 schema:datePublished 2004-04
44 schema:datePublishedReg 2004-04-01
45 schema:description OBJECTIVE: To assess the association between soyfood intake and risk of glycosuria. DESIGN AND METHODS: A cross-sectional study was conducted among participants of the Shanghai Women's Health Study, a population-based cohort study of women aged 40-70 y. Information on usual intake of soyfoods was obtained at baseline survey through an in-person interview using a validated food-frequency questionnaire. Included in this study were 39,385 cohort members screened for diabetes at the baseline survey and free of previously diagnosed diabetes, cardiovascular diseases, kidney diseases, and cancer. There were 323 women who tested positive for urine glucose. Odds ratios (ORs) and 95% confidence intervals (CIs) were employed to measure the association between soyfood intake and glycosuria using unconditional logistic regression. SETTING: Urban communities of Shanghai, China. RESULTS: Overall, soyfood intake was not related to the risk of glycosuria. Among postmenopausal women, however, intake of tofu and other soy products was inversely associated with risk of glycosuria after adjustment for potential confounders. The ORs across quintiles of intake were 1.0, 0.75 (95% CI=0.47-1.20), 0.79 (95% CI=0.51-1.25), 0.53 (95% CI=0.32-0.88), and 0.51 (95% CI=0.26-0.98; P for trend=0.05). Further analyses showed that the inverse association was primarily confined to postmenopausal women with a body mass index (BMI) of <25 kg/m2. The adjusted OR comparing the extreme quintiles was 0.36 (95% CI=0.13-0.97; P for trend=0.004). CONCLUSIONS: Soyfoods may play a role in the development of glycosuria, an important indicator of diabetes, among postmenopausal women with a low BMI.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N5d9ba906050949e9898076d3a6e17c33
50 Nd0f4413189444fe38cabebe2575ac269
51 sg:journal.1097936
52 schema:name Soyfood consumption and risk of glycosuria: a cross-sectional study within the Shanghai Women's Health Study
53 schema:pagination 615
54 schema:productId N01868400f2ae4034b466d8c2ee7e4a33
55 N2ad17b5b577942df9369dcc4d3ba6cb0
56 N2f3de403cacc4351851997cbe1064d62
57 N798c6bfba0f142b19c92e3e8a20c70d3
58 Nc0fe7d4ae3e64e40bc95309cbb6cd977
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051263504
60 https://doi.org/10.1038/sj.ejcn.1601855
61 schema:sdDatePublished 2019-04-11T12:06
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N6f31929e917b4d318e6fd955850768f9
64 schema:url https://www.nature.com/articles/1601855
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N01868400f2ae4034b466d8c2ee7e4a33 schema:name doi
69 schema:value 10.1038/sj.ejcn.1601855
70 rdf:type schema:PropertyValue
71 N029bc904e6a84de5ab3c770b07975c7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Surveys and Questionnaires
73 rdf:type schema:DefinedTerm
74 N0403f676abf84973b97d36ff7c6d237b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name China
76 rdf:type schema:DefinedTerm
77 N096aa724763f46e0bb7fd4e848c4fbfa schema:affiliation https://www.grid.ac/institutes/grid.419087.3
78 schema:familyName Huang
79 schema:givenName F
80 rdf:type schema:Person
81 N0afa41ff65ba42b1b48ba190c3cf511c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Soy Foods
83 rdf:type schema:DefinedTerm
84 N174c86bfb0834a448bc5651ce2d8d3a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Women's Health
86 rdf:type schema:DefinedTerm
87 N1be7f48bf53741b1bde9389edbf04f96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Risk Factors
89 rdf:type schema:DefinedTerm
90 N259510bfc5a74847a3841626ae103d1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Energy Intake
92 rdf:type schema:DefinedTerm
93 N2a00e59686744b63818866450ab17229 rdf:first sg:person.01114040442.68
94 rdf:rest Nf5375366fac44db7a021e9ed7ca11d24
95 N2ad17b5b577942df9369dcc4d3ba6cb0 schema:name dimensions_id
96 schema:value pub.1051263504
97 rdf:type schema:PropertyValue
98 N2f3de403cacc4351851997cbe1064d62 schema:name nlm_unique_id
99 schema:value 8804070
100 rdf:type schema:PropertyValue
101 N3040e67107e3486fa382e84294d6c716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Female
103 rdf:type schema:DefinedTerm
104 N3b90596af1374ef291352a287e41dbb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Cross-Sectional Studies
106 rdf:type schema:DefinedTerm
107 N4241ae6fdfb1477181019c4338f6d66b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Urban Population
109 rdf:type schema:DefinedTerm
110 N4c20bd3c1181472daf4bc855b5b11d5c rdf:first sg:person.0625153671.44
111 rdf:rest Naa05ae359b894cd5a08fce8ba963ec5a
112 N51ac4a8f6e524a56b7d15fea0681e442 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Diabetes Mellitus, Type 2
114 rdf:type schema:DefinedTerm
115 N5af747d6c197496aa522a4a6ee8abea1 rdf:first sg:person.016560013412.05
116 rdf:rest N2a00e59686744b63818866450ab17229
117 N5d9ba906050949e9898076d3a6e17c33 schema:issueNumber 4
118 rdf:type schema:PublicationIssue
119 N61e1bf645fad4ef887f4aa01728cd586 rdf:first sg:person.010312422777.39
120 rdf:rest N9a6c617086ad4eaf96d58a9b8bbdabe0
121 N697208e6edc944df8e3503b30bdecb7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Adult
123 rdf:type schema:DefinedTerm
124 N6f31929e917b4d318e6fd955850768f9 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N70e341e099424f518fb98f7612ef9b1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Middle Aged
128 rdf:type schema:DefinedTerm
129 N7415d212ce8d439fb6b4259d8aefff69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Glycosuria
131 rdf:type schema:DefinedTerm
132 N76a34ac343aa49228709473cdc4ff6d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Body Mass Index
134 rdf:type schema:DefinedTerm
135 N798c6bfba0f142b19c92e3e8a20c70d3 schema:name readcube_id
136 schema:value f432c626e5d38adb423be064876bfa6994c4fd2b8748648b858bc76a798aecb5
137 rdf:type schema:PropertyValue
138 N9a48474f9c2b4d9c8ed9a533d1321706 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 N9a6c617086ad4eaf96d58a9b8bbdabe0 rdf:first sg:person.016425765167.70
142 rdf:rest rdf:nil
143 Naa05ae359b894cd5a08fce8ba963ec5a rdf:first sg:person.0664541325.19
144 rdf:rest Nc844446d50f045ef8cc18a13fc009eb6
145 Naedd517bfdcb495db4dc3e7c94182af2 rdf:first sg:person.01056021632.02
146 rdf:rest N61e1bf645fad4ef887f4aa01728cd586
147 Nc0fe7d4ae3e64e40bc95309cbb6cd977 schema:name pubmed_id
148 schema:value 15042129
149 rdf:type schema:PropertyValue
150 Nc844446d50f045ef8cc18a13fc009eb6 rdf:first N096aa724763f46e0bb7fd4e848c4fbfa
151 rdf:rest Naedd517bfdcb495db4dc3e7c94182af2
152 Ncc79621ae33145a2b8c3ad55e442f0ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Aged
154 rdf:type schema:DefinedTerm
155 Nd0f4413189444fe38cabebe2575ac269 schema:volumeNumber 58
156 rdf:type schema:PublicationVolume
157 Nd18df60936c9485d9ebaebb5ac51fcb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Diet Surveys
159 rdf:type schema:DefinedTerm
160 Nf3709c7596624705b7183800cb0b78fe rdf:first sg:person.016166735457.03
161 rdf:rest N5af747d6c197496aa522a4a6ee8abea1
162 Nf5375366fac44db7a021e9ed7ca11d24 rdf:first sg:person.016657760767.99
163 rdf:rest N4c20bd3c1181472daf4bc855b5b11d5c
164 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
165 schema:name Medical and Health Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
168 schema:name Public Health and Health Services
169 rdf:type schema:DefinedTerm
170 sg:grant.2472684 http://pending.schema.org/fundedItem sg:pub.10.1038/sj.ejcn.1601855
171 rdf:type schema:MonetaryGrant
172 sg:journal.1097936 schema:issn 0954-3007
173 1476-5640
174 schema:name European Journal of Clinical Nutrition
175 rdf:type schema:Periodical
176 sg:person.010312422777.39 schema:affiliation https://www.grid.ac/institutes/grid.419087.3
177 schema:familyName Gao
178 schema:givenName Y T
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010312422777.39
180 rdf:type schema:Person
181 sg:person.01056021632.02 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
182 schema:familyName Zhang
183 schema:givenName X L
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056021632.02
185 rdf:type schema:Person
186 sg:person.01114040442.68 schema:affiliation https://www.grid.ac/institutes/grid.419087.3
187 schema:familyName Jin
188 schema:givenName F
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114040442.68
190 rdf:type schema:Person
191 sg:person.016166735457.03 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
192 schema:familyName Yang
193 schema:givenName G
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016166735457.03
195 rdf:type schema:Person
196 sg:person.016425765167.70 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
197 schema:familyName Zheng
198 schema:givenName W
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425765167.70
200 rdf:type schema:Person
201 sg:person.016560013412.05 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
202 schema:familyName Shu
203 schema:givenName XO
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560013412.05
205 rdf:type schema:Person
206 sg:person.016657760767.99 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
207 schema:familyName Elasy
208 schema:givenName T
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016657760767.99
210 rdf:type schema:Person
211 sg:person.0625153671.44 schema:affiliation https://www.grid.ac/institutes/grid.419087.3
212 schema:familyName Li
213 schema:givenName H L
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625153671.44
215 rdf:type schema:Person
216 sg:person.0664541325.19 schema:affiliation https://www.grid.ac/institutes/grid.419087.3
217 schema:familyName Li
218 schema:givenName Q
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664541325.19
220 rdf:type schema:Person
221 sg:pub.10.1038/sj.ejcn.1600993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033334907
222 https://doi.org/10.1038/sj.ejcn.1600993
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/sj.ejcn.1601738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022526943
225 https://doi.org/10.1038/sj.ejcn.1601738
226 rdf:type schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1074807125 schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1075060447 schema:CreativeWork
229 https://doi.org/10.1016/0021-9150(85)90013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046570096
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/0021-9150(86)90098-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007661480
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0026-0495(97)90016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011870813
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0168-8227(01)00277-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020466329
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1042/cs0830489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056726969
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/ajcn/39.1.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081676938
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/ajcn/76.6.1191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075195874
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/ajhp/58.8.663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074807125
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/jn/127.6.1077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083103615
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/jn/131.4.1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074793944
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/j.1365-2362.1993.tb00792.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047671896
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1152/ajpendo.2000.278.3.e491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074602616
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1210/jc.85.8.2797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064301505
254 rdf:type schema:CreativeWork
255 https://doi.org/10.2337/diacare.18.8.1104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070746805
256 rdf:type schema:CreativeWork
257 https://doi.org/10.2337/diacare.20.4.645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070747660
258 rdf:type schema:CreativeWork
259 https://doi.org/10.2337/diacare.24.2.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002944147
260 rdf:type schema:CreativeWork
261 https://doi.org/10.2337/diacare.25.10.1709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030298575
262 rdf:type schema:CreativeWork
263 https://doi.org/10.3109/07853899709113696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001602430
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.412807.8 schema:alternateName Vanderbilt University Medical Center
266 schema:name Center for Health Service Research, Vanderbilt University Medical Center, Nashville, TN, USA
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.419087.3 schema:alternateName Shanghai Cancer Institute
269 schema:name Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...