Validity of total and segmental impedance measurements for prediction of body composition across ethnic population groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-03

AUTHORS

P Deurenberg, M Deurenberg-Yap, FJM Schouten

ABSTRACT

OBJECTIVES: To test the impact of body build factors on the validity of impedance-based body composition predictions across (ethnic) population groups and to study the suitability of segmental impedance measurements. DESIGN: Cross-sectional observational study. SETTINGS: Ministry of Health and School of Physical Education, Nanyang Technological University, Singapore. SUBJECTS: A total of 291 female and male Chinese, Malays and Indian Singaporeans, aged 18-69, body mass index (BMI) 16.0-40.2 kg/ m2. METHODS: Anthropometric parameters were measured in addition to impedance (100 kHz) of the total body, arms and legs. Impedance indexes were calculated as height2/impedance. Arm length (span) and leg length (sitting height), wrist and knee width were measured from which body build indices were calculated. Total body water (TBW) was measured using deuterium oxide dilution. Extra cellular water (ECW) was measured using bromide dilution. Body fat percentage was determined using a chemical four-compartment model. RESULTS: The bias of TBW predicted from total body impedance index (bias: measured minus predicted TBW) was different among the three ethnic groups, TBW being significantly underestimated in Indians compared to Chinese and Malays. This bias was found to be dependent on body water distribution (ECW/TBW) and parameters of body build, mainly relative (to height) arm length. After correcting for differences in body water distribution and body build parameters the differences in bias across the ethnic groups disappeared. The impedance index using total body impedance was better correlated with TBW than the impedance index of arm or leg impedance, even after corrections for body build parameters. CONCLUSIONS: The study shows that ethnic-specific bias of impedance-based prediction formulas for body composition is due mainly to differences in body build among the ethnic groups. This means that the use of 'general' prediction equations across different (ethnic) population groups without prior testing of their validity should be avoided. Total body impedance has higher predictive value than segmental impedance. More... »

PAGES

1601303

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601303

DOI

http://dx.doi.org/10.1038/sj.ejcn.1601303

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005513136

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11960296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Impedance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ethnic Groups", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Extremities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Singapore", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Nutrition Consultant in Singapore, affiliated to Department of Nutrition and Epidemiology, Wageningen University, The Netherlands and Department of Human Physiology, University \u2018Tor Vergata\u2019, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deurenberg", 
        "givenName": "P", 
        "id": "sg:person.0725156272.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725156272.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion Board", 
          "id": "https://www.grid.ac/institutes/grid.413892.5", 
          "name": [
            "Research and Health Information Management Department, Health Promotion Board, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deurenberg-Yap", 
        "givenName": "M", 
        "id": "sg:person.01262064764.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262064764.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Department of Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schouten", 
        "givenName": "FJM", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0007114500000155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011014732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/00005768-199512000-00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014071682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016164493", 
          "https://doi.org/10.1038/sj.ijo.0801353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016164493", 
          "https://doi.org/10.1038/sj.ijo.0801353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330940207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017744910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330940207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017744910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19950038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028980900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19950038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028980900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1440-6047.2002.00258.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032917700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1600778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033926257", 
          "https://doi.org/10.1038/sj.ejcn.1600778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1600778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033926257", 
          "https://doi.org/10.1038/sj.ejcn.1600778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000012795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036077782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0800868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036795617", 
          "https://doi.org/10.1038/sj.ijo.0800868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0800868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036795617", 
          "https://doi.org/10.1038/sj.ijo.0800868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511525650.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037736566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4654-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043837143", 
          "https://doi.org/10.1007/978-1-4612-4654-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4654-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043837143", 
          "https://doi.org/10.1007/978-1-4612-4654-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1440-6047.1999.00088.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048195181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1440-6047.1999.00088.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048195181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1942.02830070001001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049660457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/69.5.833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074369238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077026219", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/53.6.1345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078139350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079134634", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079134641", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/50.2.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079320229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/41.2.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079492392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/46.4.537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079676436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/44.3.417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079804166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082736671", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1996.271.6.e941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083032069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511629105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740742"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-03", 
    "datePublishedReg": "2002-03-01", 
    "description": "OBJECTIVES: To test the impact of body build factors on the validity of impedance-based body composition predictions across (ethnic) population groups and to study the suitability of segmental impedance measurements.\nDESIGN: Cross-sectional observational study.\nSETTINGS: Ministry of Health and School of Physical Education, Nanyang Technological University, Singapore.\nSUBJECTS: A total of 291 female and male Chinese, Malays and Indian Singaporeans, aged 18-69, body mass index (BMI) 16.0-40.2 kg/ m2.\nMETHODS: Anthropometric parameters were measured in addition to impedance (100 kHz) of the total body, arms and legs. Impedance indexes were calculated as height2/impedance. Arm length (span) and leg length (sitting height), wrist and knee width were measured from which body build indices were calculated. Total body water (TBW) was measured using deuterium oxide dilution. Extra cellular water (ECW) was measured using bromide dilution. Body fat percentage was determined using a chemical four-compartment model.\nRESULTS: The bias of TBW predicted from total body impedance index (bias: measured minus predicted TBW) was different among the three ethnic groups, TBW being significantly underestimated in Indians compared to Chinese and Malays. This bias was found to be dependent on body water distribution (ECW/TBW) and parameters of body build, mainly relative (to height) arm length. After correcting for differences in body water distribution and body build parameters the differences in bias across the ethnic groups disappeared. The impedance index using total body impedance was better correlated with TBW than the impedance index of arm or leg impedance, even after corrections for body build parameters.\nCONCLUSIONS: The study shows that ethnic-specific bias of impedance-based prediction formulas for body composition is due mainly to differences in body build among the ethnic groups. This means that the use of 'general' prediction equations across different (ethnic) population groups without prior testing of their validity should be avoided. Total body impedance has higher predictive value than segmental impedance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.ejcn.1601303", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "Validity of total and segmental impedance measurements for prediction of body composition across ethnic population groups", 
    "pagination": "1601303", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a44ccc526f50aa3954d6c661dcc9baf9fa3325273449e684ffc75e941bf33ba"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11960296"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8804070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejcn.1601303"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005513136"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejcn.1601303", 
      "https://app.dimensions.ai/details/publication/pub.1005513136"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118336_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/1601303"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601303'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601303'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601303'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1601303'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      70 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejcn.1601303 schema:about N1a24c0c93ce945ea88f5778026ebe889
2 N213a1553e6654fd5b018e2e2b88c2568
3 N25d0bfc78e0340f8b849698942859d9c
4 N2ab6c9fb9ade4d1a83bb997d528d9c22
5 N2f70ee800e734fd1a1459783fae6f970
6 N53c9ef5d922a49abadf5e26510adb981
7 N6119270eee59499699a356fef6f350ef
8 N6a32aad92c544159b62e78c8786a4e20
9 N91e5223414864850afa09a05ce34917f
10 N97fad358dd1942d7a91581345646b26b
11 N9b18fbc9b7de4ae7a50aca5b6621949e
12 Na603d22bb52d4ee582739e53d3e68eaf
13 Nb1ceb332ea0444d6ac3e8a2a98719058
14 Nbb9317b62bde47d9aa2112a2f06f710c
15 Nedaa05f1f544415584e0cabb812864fd
16 Nfc85bf162a584b2e91e99c3818f49d06
17 anzsrc-for:11
18 anzsrc-for:1117
19 schema:author N13df58dd8bc24195883a691ae4dc4e60
20 schema:citation sg:pub.10.1007/978-1-4612-4654-1
21 sg:pub.10.1038/sj.ejcn.1600778
22 sg:pub.10.1038/sj.ijo.0800868
23 sg:pub.10.1038/sj.ijo.0801353
24 https://app.dimensions.ai/details/publication/pub.1077026219
25 https://app.dimensions.ai/details/publication/pub.1079134634
26 https://app.dimensions.ai/details/publication/pub.1079134641
27 https://app.dimensions.ai/details/publication/pub.1082736671
28 https://doi.org/10.1001/jama.1942.02830070001001
29 https://doi.org/10.1002/ajpa.1330940207
30 https://doi.org/10.1017/cbo9780511525650.011
31 https://doi.org/10.1017/cbo9780511629105
32 https://doi.org/10.1017/s0007114500000155
33 https://doi.org/10.1046/j.1440-6047.1999.00088.x
34 https://doi.org/10.1046/j.1440-6047.2002.00258.x
35 https://doi.org/10.1079/bjn19950038
36 https://doi.org/10.1093/ajcn/41.2.363
37 https://doi.org/10.1093/ajcn/44.3.417
38 https://doi.org/10.1093/ajcn/46.4.537
39 https://doi.org/10.1093/ajcn/50.2.221
40 https://doi.org/10.1093/ajcn/53.6.1345
41 https://doi.org/10.1093/ajcn/69.5.833
42 https://doi.org/10.1152/ajpendo.1996.271.6.e941
43 https://doi.org/10.1159/000012795
44 https://doi.org/10.1249/00005768-199512000-00017
45 schema:datePublished 2002-03
46 schema:datePublishedReg 2002-03-01
47 schema:description OBJECTIVES: To test the impact of body build factors on the validity of impedance-based body composition predictions across (ethnic) population groups and to study the suitability of segmental impedance measurements. DESIGN: Cross-sectional observational study. SETTINGS: Ministry of Health and School of Physical Education, Nanyang Technological University, Singapore. SUBJECTS: A total of 291 female and male Chinese, Malays and Indian Singaporeans, aged 18-69, body mass index (BMI) 16.0-40.2 kg/ m2. METHODS: Anthropometric parameters were measured in addition to impedance (100 kHz) of the total body, arms and legs. Impedance indexes were calculated as height2/impedance. Arm length (span) and leg length (sitting height), wrist and knee width were measured from which body build indices were calculated. Total body water (TBW) was measured using deuterium oxide dilution. Extra cellular water (ECW) was measured using bromide dilution. Body fat percentage was determined using a chemical four-compartment model. RESULTS: The bias of TBW predicted from total body impedance index (bias: measured minus predicted TBW) was different among the three ethnic groups, TBW being significantly underestimated in Indians compared to Chinese and Malays. This bias was found to be dependent on body water distribution (ECW/TBW) and parameters of body build, mainly relative (to height) arm length. After correcting for differences in body water distribution and body build parameters the differences in bias across the ethnic groups disappeared. The impedance index using total body impedance was better correlated with TBW than the impedance index of arm or leg impedance, even after corrections for body build parameters. CONCLUSIONS: The study shows that ethnic-specific bias of impedance-based prediction formulas for body composition is due mainly to differences in body build among the ethnic groups. This means that the use of 'general' prediction equations across different (ethnic) population groups without prior testing of their validity should be avoided. Total body impedance has higher predictive value than segmental impedance.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf Nd33280f1327045c2b086acc58294bc58
52 Ne7b7ce566db14c85aa21ac543e2329dd
53 sg:journal.1097936
54 schema:name Validity of total and segmental impedance measurements for prediction of body composition across ethnic population groups
55 schema:pagination 1601303
56 schema:productId N46e575eb10fb4fceae2ac0819fb6f4c4
57 N49c1f3d28b9845b9a4a8bca649d7bb3f
58 N66f1ece21e04466085d386b2a8719b69
59 Nda1b3820304f4f3d8c36dfe39bfd14fa
60 Ne7ce33dc8d6d48feaf5e1f50a8780661
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005513136
62 https://doi.org/10.1038/sj.ejcn.1601303
63 schema:sdDatePublished 2019-04-11T12:06
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N0cb01d4f69874870a1fc5904c536b2a9
66 schema:url http://www.nature.com/articles/1601303
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N03285d0849ef42afadda0dd2850f61a7 schema:name Nutrition Consultant in Singapore, affiliated to Department of Nutrition and Epidemiology, Wageningen University, The Netherlands and Department of Human Physiology, University ‘Tor Vergata’, Rome, Italy
71 rdf:type schema:Organization
72 N0cb01d4f69874870a1fc5904c536b2a9 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N13df58dd8bc24195883a691ae4dc4e60 rdf:first sg:person.0725156272.05
75 rdf:rest N955db6120ec1484c8a979788dd3104de
76 N1a24c0c93ce945ea88f5778026ebe889 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Adult
78 rdf:type schema:DefinedTerm
79 N1e4c4ebba9e04951bc2aa1e72b3604fe schema:affiliation https://www.grid.ac/institutes/grid.4818.5
80 schema:familyName Schouten
81 schema:givenName FJM
82 rdf:type schema:Person
83 N213a1553e6654fd5b018e2e2b88c2568 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Asian Continental Ancestry Group
85 rdf:type schema:DefinedTerm
86 N25d0bfc78e0340f8b849698942859d9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Body Water
88 rdf:type schema:DefinedTerm
89 N2ab6c9fb9ade4d1a83bb997d528d9c22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Singapore
91 rdf:type schema:DefinedTerm
92 N2f70ee800e734fd1a1459783fae6f970 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Middle Aged
94 rdf:type schema:DefinedTerm
95 N46e575eb10fb4fceae2ac0819fb6f4c4 schema:name dimensions_id
96 schema:value pub.1005513136
97 rdf:type schema:PropertyValue
98 N49c1f3d28b9845b9a4a8bca649d7bb3f schema:name readcube_id
99 schema:value 1a44ccc526f50aa3954d6c661dcc9baf9fa3325273449e684ffc75e941bf33ba
100 rdf:type schema:PropertyValue
101 N53c9ef5d922a49abadf5e26510adb981 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Adolescent
103 rdf:type schema:DefinedTerm
104 N6119270eee59499699a356fef6f350ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Male
106 rdf:type schema:DefinedTerm
107 N66f1ece21e04466085d386b2a8719b69 schema:name doi
108 schema:value 10.1038/sj.ejcn.1601303
109 rdf:type schema:PropertyValue
110 N6a32aad92c544159b62e78c8786a4e20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Female
112 rdf:type schema:DefinedTerm
113 N6b1c8595c0e9404eac9cc86ca6b03626 rdf:first N1e4c4ebba9e04951bc2aa1e72b3604fe
114 rdf:rest rdf:nil
115 N91e5223414864850afa09a05ce34917f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Body Composition
117 rdf:type schema:DefinedTerm
118 N955db6120ec1484c8a979788dd3104de rdf:first sg:person.01262064764.24
119 rdf:rest N6b1c8595c0e9404eac9cc86ca6b03626
120 N97fad358dd1942d7a91581345646b26b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Reproducibility of Results
122 rdf:type schema:DefinedTerm
123 N9b18fbc9b7de4ae7a50aca5b6621949e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 Na603d22bb52d4ee582739e53d3e68eaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Extremities
128 rdf:type schema:DefinedTerm
129 Nb1ceb332ea0444d6ac3e8a2a98719058 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Aged
131 rdf:type schema:DefinedTerm
132 Nbb9317b62bde47d9aa2112a2f06f710c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Electric Impedance
134 rdf:type schema:DefinedTerm
135 Nd33280f1327045c2b086acc58294bc58 schema:volumeNumber 56
136 rdf:type schema:PublicationVolume
137 Nda1b3820304f4f3d8c36dfe39bfd14fa schema:name nlm_unique_id
138 schema:value 8804070
139 rdf:type schema:PropertyValue
140 Ne7b7ce566db14c85aa21ac543e2329dd schema:issueNumber 3
141 rdf:type schema:PublicationIssue
142 Ne7ce33dc8d6d48feaf5e1f50a8780661 schema:name pubmed_id
143 schema:value 11960296
144 rdf:type schema:PropertyValue
145 Nedaa05f1f544415584e0cabb812864fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Bias
147 rdf:type schema:DefinedTerm
148 Nfc85bf162a584b2e91e99c3818f49d06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Ethnic Groups
150 rdf:type schema:DefinedTerm
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
155 schema:name Public Health and Health Services
156 rdf:type schema:DefinedTerm
157 sg:journal.1097936 schema:issn 0954-3007
158 1476-5640
159 schema:name European Journal of Clinical Nutrition
160 rdf:type schema:Periodical
161 sg:person.01262064764.24 schema:affiliation https://www.grid.ac/institutes/grid.413892.5
162 schema:familyName Deurenberg-Yap
163 schema:givenName M
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262064764.24
165 rdf:type schema:Person
166 sg:person.0725156272.05 schema:affiliation N03285d0849ef42afadda0dd2850f61a7
167 schema:familyName Deurenberg
168 schema:givenName P
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725156272.05
170 rdf:type schema:Person
171 sg:pub.10.1007/978-1-4612-4654-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043837143
172 https://doi.org/10.1007/978-1-4612-4654-1
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/sj.ejcn.1600778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033926257
175 https://doi.org/10.1038/sj.ejcn.1600778
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/sj.ijo.0800868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036795617
178 https://doi.org/10.1038/sj.ijo.0800868
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/sj.ijo.0801353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016164493
181 https://doi.org/10.1038/sj.ijo.0801353
182 rdf:type schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1077026219 schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1079134634 schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1079134641 schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1082736671 schema:CreativeWork
187 https://doi.org/10.1001/jama.1942.02830070001001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049660457
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/ajpa.1330940207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017744910
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1017/cbo9780511525650.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037736566
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1017/cbo9780511629105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740742
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1017/s0007114500000155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011014732
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1046/j.1440-6047.1999.00088.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048195181
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1046/j.1440-6047.2002.00258.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032917700
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1079/bjn19950038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028980900
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/ajcn/41.2.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079492392
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/ajcn/44.3.417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079804166
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/ajcn/46.4.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079676436
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/ajcn/50.2.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079320229
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/ajcn/53.6.1345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078139350
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/ajcn/69.5.833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074369238
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1152/ajpendo.1996.271.6.e941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083032069
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1159/000012795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036077782
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1249/00005768-199512000-00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014071682
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.413892.5 schema:alternateName Health Promotion Board
222 schema:name Research and Health Information Management Department, Health Promotion Board, Singapore
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
225 schema:name Department of Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...