A combined heart rate and movement sensor: proof of concept and preliminary testing study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-05

AUTHORS

K Rennie, T Rowsell, Jebb, D Holburn, NJ Wareham

ABSTRACT

OBJECTIVE: Heart rate monitoring has previously been used as a technique for measuring energy expenditure (EE) in field studies. However, the combination of heart rate monitoring with movement sensoring could have theoretical advantages compared to either method used alone. Therefore, this study was undertaken to develop and validate a new combined heart rate monitor and movement sensor instrument (HR+M) for measuring EE. METHODS: The HR+M instrument is a single-piece instrument worn around the chest which records minute-by-minute heart rate and movement. Eight subjects underwent an individual calibration in which EE and heart rate were measured at rest and during a sub-maximal bicycle ergometer test. They then wore the HR+M for 24 hours in a whole-body calorimeter and underwent a standard protocol including periods of physical activity and inactivity. Minute-by-minute heart rate was converted to EE using individual calibration curves with the motion data discriminating between periods of inactivity and activity at low heart rate levels. EE was also calculated using the HRFlex method which relies on heart rate alone. Both estimates of EE were compared to EE measured in the whole-body calorimeter. RESULTS: The mean percentage error of the HR+M method calculating TEE compared with the gold standard of the calorimeter measurement was 0.00% (95% CI of the mean error -0.25, 1. 25). The HRFlex method using the heart rate information alone resulted in a mean percentage error of 16.5% (95% CI of the mean error -0.57, 1.76). CONCLUSIONS: This preliminary test of HR+M demonstrates its ability to estimate EE and the pattern of EE and activity throughout the day. Further validation studies in free-living individuals are necessary. SPONSORSHIP: NJW is an MRC Clinician Scientist Fellow. KLR holds an MRC PhD scholarship. More... »

PAGES

1600973

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.ejcn.1600973

DOI

http://dx.doi.org/10.1038/sj.ejcn.1600973

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001409642

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10822288


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calorimetry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise Test", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monitoring, Ambulatory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monitoring, Physiologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Community Medicine, Institute of Public Health, University of Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rennie", 
        "givenName": "K", 
        "id": "sg:person.0732730313.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732730313.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Engineering, University of Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rowsell", 
        "givenName": "T", 
        "id": "sg:person.01076253112.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076253112.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Human Nutrition Research", 
          "id": "https://www.grid.ac/institutes/grid.415055.0", 
          "name": [
            "MRC Human Nutrition Research, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jebb", 
        "id": "sg:person.01244077754.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244077754.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Engineering, University of Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holburn", 
        "givenName": "D", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Community Medicine, Institute of Public Health, University of Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wareham", 
        "givenName": "NJ", 
        "id": "sg:person.013723776517.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723776517.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00705064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003855225", 
          "https://doi.org/10.1007/bf00705064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00705064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003855225", 
          "https://doi.org/10.1007/bf00705064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114598001287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012899743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000421672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014715010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19890107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015370721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19890107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015370721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/00005768-199301000-00015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027541906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1963.03700260090052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036116431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19970207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036773222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/bjn19970207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036773222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02442102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039747226", 
          "https://doi.org/10.1007/bf02442102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02442102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039747226", 
          "https://doi.org/10.1007/bf02442102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/00005768-198906000-00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042342231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1748-1716.1993.tb09476.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048683223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/00005768-199501000-00022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051496753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005768-199701000-00021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060226351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005768-199701000-00021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060226351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005768-199701000-00021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060226351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005768-199901000-00026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060230652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005768-199901000-00026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060230652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005768-199901000-00026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060230652"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-05", 
    "datePublishedReg": "2000-05-01", 
    "description": "OBJECTIVE: Heart rate monitoring has previously been used as a technique for measuring energy expenditure (EE) in field studies. However, the combination of heart rate monitoring with movement sensoring could have theoretical advantages compared to either method used alone. Therefore, this study was undertaken to develop and validate a new combined heart rate monitor and movement sensor instrument (HR+M) for measuring EE.\nMETHODS: The HR+M instrument is a single-piece instrument worn around the chest which records minute-by-minute heart rate and movement. Eight subjects underwent an individual calibration in which EE and heart rate were measured at rest and during a sub-maximal bicycle ergometer test. They then wore the HR+M for 24 hours in a whole-body calorimeter and underwent a standard protocol including periods of physical activity and inactivity. Minute-by-minute heart rate was converted to EE using individual calibration curves with the motion data discriminating between periods of inactivity and activity at low heart rate levels. EE was also calculated using the HRFlex method which relies on heart rate alone. Both estimates of EE were compared to EE measured in the whole-body calorimeter.\nRESULTS: The mean percentage error of the HR+M method calculating TEE compared with the gold standard of the calorimeter measurement was 0.00% (95% CI of the mean error -0.25, 1. 25). The HRFlex method using the heart rate information alone resulted in a mean percentage error of 16.5% (95% CI of the mean error -0.57, 1.76).\nCONCLUSIONS: This preliminary test of HR+M demonstrates its ability to estimate EE and the pattern of EE and activity throughout the day. Further validation studies in free-living individuals are necessary.\nSPONSORSHIP: NJW is an MRC Clinician Scientist Fellow. KLR holds an MRC PhD scholarship.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.ejcn.1600973", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "A combined heart rate and movement sensor: proof of concept and preliminary testing study", 
    "pagination": "1600973", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06b70e64b773abecce0d63ca4b4e345ce957c948e14de3549a65bc63828fcd9b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10822288"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8804070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.ejcn.1600973"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001409642"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.ejcn.1600973", 
      "https://app.dimensions.ai/details/publication/pub.1001409642"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118344_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/1600973"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1600973'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1600973'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1600973'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.ejcn.1600973'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      55 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.ejcn.1600973 schema:about N03a527181c814a2a9b9b84a95169d82b
2 N05637c6641114611bf86fa085c61faa0
3 N150614fdbaec4fa28176fa6be743262f
4 N2e6e8ab0fa4840c4bc74fd522f3f73dc
5 N397c2d2326f047368c06c0963fec9d3c
6 N4080841608bf47b1afa6406bc2dfa087
7 N4851ca6a922d4d3cb58ce9cd87f90d32
8 N6e94cea9e9b743649e418a57ba4f0c1b
9 N7aa9d73b32bd4ac9be7c1e8784b9311c
10 N86ea781fb506422982e95745be7c875e
11 Na4184feb6f004ddeb785ee5c6dfce1df
12 Nafe4fc94d3a04a95a65e7417fd69ed8f
13 Nb3945ee2ae834dedbc7ea02a434e20e4
14 anzsrc-for:08
15 anzsrc-for:0801
16 schema:author Nb7dc40edfcc54a61b42a1c107d52a263
17 schema:citation sg:pub.10.1007/bf00705064
18 sg:pub.10.1007/bf02442102
19 https://doi.org/10.1001/jama.1963.03700260090052
20 https://doi.org/10.1017/s0007114598001287
21 https://doi.org/10.1079/bjn19890107
22 https://doi.org/10.1079/bjn19970207
23 https://doi.org/10.1097/00005768-199701000-00021
24 https://doi.org/10.1097/00005768-199901000-00026
25 https://doi.org/10.1111/j.1748-1716.1993.tb09476.x
26 https://doi.org/10.1159/000421672
27 https://doi.org/10.1249/00005768-198906000-00020
28 https://doi.org/10.1249/00005768-199301000-00015
29 https://doi.org/10.1249/00005768-199501000-00022
30 schema:datePublished 2000-05
31 schema:datePublishedReg 2000-05-01
32 schema:description OBJECTIVE: Heart rate monitoring has previously been used as a technique for measuring energy expenditure (EE) in field studies. However, the combination of heart rate monitoring with movement sensoring could have theoretical advantages compared to either method used alone. Therefore, this study was undertaken to develop and validate a new combined heart rate monitor and movement sensor instrument (HR+M) for measuring EE. METHODS: The HR+M instrument is a single-piece instrument worn around the chest which records minute-by-minute heart rate and movement. Eight subjects underwent an individual calibration in which EE and heart rate were measured at rest and during a sub-maximal bicycle ergometer test. They then wore the HR+M for 24 hours in a whole-body calorimeter and underwent a standard protocol including periods of physical activity and inactivity. Minute-by-minute heart rate was converted to EE using individual calibration curves with the motion data discriminating between periods of inactivity and activity at low heart rate levels. EE was also calculated using the HRFlex method which relies on heart rate alone. Both estimates of EE were compared to EE measured in the whole-body calorimeter. RESULTS: The mean percentage error of the HR+M method calculating TEE compared with the gold standard of the calorimeter measurement was 0.00% (95% CI of the mean error -0.25, 1. 25). The HRFlex method using the heart rate information alone resulted in a mean percentage error of 16.5% (95% CI of the mean error -0.57, 1.76). CONCLUSIONS: This preliminary test of HR+M demonstrates its ability to estimate EE and the pattern of EE and activity throughout the day. Further validation studies in free-living individuals are necessary. SPONSORSHIP: NJW is an MRC Clinician Scientist Fellow. KLR holds an MRC PhD scholarship.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N8d65c302ff864e399c1b7b9392504cdd
37 Na513a91dbd944441ba25fddef31e99ca
38 sg:journal.1097936
39 schema:name A combined heart rate and movement sensor: proof of concept and preliminary testing study
40 schema:pagination 1600973
41 schema:productId N2955e521b327424c92d624e58a126ac8
42 N2b6bf2c7445e4d05bf6e66de514b428e
43 N3b6616f30e1343a6bfe407be8e5cc066
44 N50baf8a7ea43479b9c6528665630e03a
45 N5da2db57180649089e94bbe80a2a02c1
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001409642
47 https://doi.org/10.1038/sj.ejcn.1600973
48 schema:sdDatePublished 2019-04-11T12:07
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N6b908be56f2b40bb8e2260cb87df65a4
51 schema:url http://www.nature.com/articles/1600973
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N03a527181c814a2a9b9b84a95169d82b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Movement
57 rdf:type schema:DefinedTerm
58 N05637c6641114611bf86fa085c61faa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Calorimetry
60 rdf:type schema:DefinedTerm
61 N150614fdbaec4fa28176fa6be743262f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Exercise Test
63 rdf:type schema:DefinedTerm
64 N1ddc13b45a074057961e2ffa016825e0 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
65 schema:familyName Holburn
66 schema:givenName D
67 rdf:type schema:Person
68 N2955e521b327424c92d624e58a126ac8 schema:name doi
69 schema:value 10.1038/sj.ejcn.1600973
70 rdf:type schema:PropertyValue
71 N2b6bf2c7445e4d05bf6e66de514b428e schema:name dimensions_id
72 schema:value pub.1001409642
73 rdf:type schema:PropertyValue
74 N2e6e8ab0fa4840c4bc74fd522f3f73dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Female
76 rdf:type schema:DefinedTerm
77 N397c2d2326f047368c06c0963fec9d3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Male
79 rdf:type schema:DefinedTerm
80 N3b6616f30e1343a6bfe407be8e5cc066 schema:name nlm_unique_id
81 schema:value 8804070
82 rdf:type schema:PropertyValue
83 N3b9bcaed026a4fdaa3a5644f1540cf48 rdf:first sg:person.01244077754.55
84 rdf:rest N9b4d67191fee4634bccdf7844c02851f
85 N4080841608bf47b1afa6406bc2dfa087 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Monitoring, Physiologic
87 rdf:type schema:DefinedTerm
88 N4851ca6a922d4d3cb58ce9cd87f90d32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Monitoring, Ambulatory
90 rdf:type schema:DefinedTerm
91 N50baf8a7ea43479b9c6528665630e03a schema:name readcube_id
92 schema:value 06b70e64b773abecce0d63ca4b4e345ce957c948e14de3549a65bc63828fcd9b
93 rdf:type schema:PropertyValue
94 N5da2db57180649089e94bbe80a2a02c1 schema:name pubmed_id
95 schema:value 10822288
96 rdf:type schema:PropertyValue
97 N6b908be56f2b40bb8e2260cb87df65a4 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N6e94cea9e9b743649e418a57ba4f0c1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Body Mass Index
101 rdf:type schema:DefinedTerm
102 N7aa9d73b32bd4ac9be7c1e8784b9311c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Adult
104 rdf:type schema:DefinedTerm
105 N86ea781fb506422982e95745be7c875e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 N8d65c302ff864e399c1b7b9392504cdd schema:volumeNumber 54
109 rdf:type schema:PublicationVolume
110 N9b4d67191fee4634bccdf7844c02851f rdf:first N1ddc13b45a074057961e2ffa016825e0
111 rdf:rest Ndb56a852e18544108b153f335c8cf7d9
112 Na4184feb6f004ddeb785ee5c6dfce1df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Energy Metabolism
114 rdf:type schema:DefinedTerm
115 Na513a91dbd944441ba25fddef31e99ca schema:issueNumber 5
116 rdf:type schema:PublicationIssue
117 Nafe4fc94d3a04a95a65e7417fd69ed8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Middle Aged
119 rdf:type schema:DefinedTerm
120 Nb3945ee2ae834dedbc7ea02a434e20e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Heart Rate
122 rdf:type schema:DefinedTerm
123 Nb7dc40edfcc54a61b42a1c107d52a263 rdf:first sg:person.0732730313.51
124 rdf:rest Ne8563184e9a24e978fb32c5b63daead7
125 Ndb56a852e18544108b153f335c8cf7d9 rdf:first sg:person.013723776517.34
126 rdf:rest rdf:nil
127 Ne8563184e9a24e978fb32c5b63daead7 rdf:first sg:person.01076253112.54
128 rdf:rest N3b9bcaed026a4fdaa3a5644f1540cf48
129 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
130 schema:name Information and Computing Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
133 schema:name Artificial Intelligence and Image Processing
134 rdf:type schema:DefinedTerm
135 sg:journal.1097936 schema:issn 0954-3007
136 1476-5640
137 schema:name European Journal of Clinical Nutrition
138 rdf:type schema:Periodical
139 sg:person.01076253112.54 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
140 schema:familyName Rowsell
141 schema:givenName T
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076253112.54
143 rdf:type schema:Person
144 sg:person.01244077754.55 schema:affiliation https://www.grid.ac/institutes/grid.415055.0
145 schema:familyName Jebb
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244077754.55
147 rdf:type schema:Person
148 sg:person.013723776517.34 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
149 schema:familyName Wareham
150 schema:givenName NJ
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723776517.34
152 rdf:type schema:Person
153 sg:person.0732730313.51 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
154 schema:familyName Rennie
155 schema:givenName K
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732730313.51
157 rdf:type schema:Person
158 sg:pub.10.1007/bf00705064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003855225
159 https://doi.org/10.1007/bf00705064
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf02442102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039747226
162 https://doi.org/10.1007/bf02442102
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1001/jama.1963.03700260090052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036116431
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1017/s0007114598001287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012899743
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1079/bjn19890107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015370721
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1079/bjn19970207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036773222
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1097/00005768-199701000-00021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060226351
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1097/00005768-199901000-00026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060230652
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.1748-1716.1993.tb09476.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048683223
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1159/000421672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014715010
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1249/00005768-198906000-00020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042342231
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1249/00005768-199301000-00015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027541906
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1249/00005768-199501000-00022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051496753
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.415055.0 schema:alternateName MRC Human Nutrition Research
187 schema:name MRC Human Nutrition Research, Cambridge, UK
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
190 schema:name Department of Community Medicine, Institute of Public Health, University of Cambridge, UK
191 Department of Engineering, University of Cambridge, UK
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...