HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-02-27

AUTHORS

Paola Gallinari, Stefania Di Marco, Phillip Jones, Michele Pallaoro, Christian Steinkühler

ABSTRACT

Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients. More... »

PAGES

195-211

References to SciGraph publications

  • 1999-01. Role of protein kinase CK2 in phosphorylation of nucleosomal proteins in relation to transcriptional activity in MOLECULAR AND CELLULAR BIOCHEMISTRY
  • 2001-03. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins in NATURE
  • 2003-09-29. Cancer epigenetics in ONCOGENE
  • 2006-03-13. Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src in ONCOGENE
  • 1977-08. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells in NATURE
  • 2002-05. HDAC6 is a microtubule-associated deacetylase in NATURE
  • 2001-03. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain in NATURE
  • 2000-11. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation in NATURE
  • 2005-07-19. Silence of the genes — mechanisms of long-term repression in NATURE REVIEWS GENETICS
  • 2002-06-24. Genome-wide binding map of the histone deacetylase Rpd3 in yeast in NATURE GENETICS
  • 2001-04. The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II) in MOLECULAR AND CELLULAR BIOCHEMISTRY
  • 2005-08. DNA methylation and human disease in NATURE REVIEWS GENETICS
  • 2001-02. Chronic Oral Administration of CI-994: A Phase I Study in INVESTIGATIONAL NEW DRUGS
  • 2005-11. The diverse functions of histone lysine methylation in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 1999-09. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors in NATURE
  • 2006-01. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer in NATURE REVIEWS CANCER
  • 2005-03. Drug Insight: histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2003-02-03. Attenuation of a phosphorylation-dependent activator by an HDAC–PP1 complex in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/sj.cr.7310149

    DOI

    http://dx.doi.org/10.1038/sj.cr.7310149

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023212695

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17325692


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acetylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histone Deacetylase Inhibitors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histone Deacetylases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histones", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gallinari", 
            "givenName": "Paola", 
            "id": "sg:person.0753472575.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753472575.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marco", 
            "givenName": "Stefania Di", 
            "id": "sg:person.01337752407.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337752407.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jones", 
            "givenName": "Phillip", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pallaoro", 
            "givenName": "Michele", 
            "id": "sg:person.01032445057.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032445057.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Istituto di Ricerche di Biologia Molecolare \u201cP. Angeletti\u201d-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steink\u00fchler", 
            "givenName": "Christian", 
            "id": "sg:person.0706442517.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706442517.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35040593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052267439", 
              "https://doi.org/10.1038/35040593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/417455a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050154102", 
              "https://doi.org/10.1038/417455a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028604901", 
              "https://doi.org/10.1038/nrm1761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/268462a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007738689", 
              "https://doi.org/10.1038/268462a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncponc0106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022636192", 
              "https://doi.org/10.1038/ncponc0106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006489328324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053705347", 
              "https://doi.org/10.1023/a:1006489328324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028882140", 
              "https://doi.org/10.1038/nrg1639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1206774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031013098", 
              "https://doi.org/10.1038/sj.onc.1206774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020526163", 
              "https://doi.org/10.1038/35065132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006881405383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049799512", 
              "https://doi.org/10.1023/a:1006881405383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051306658", 
              "https://doi.org/10.1038/ng907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049319912", 
              "https://doi.org/10.1038/43710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041124062", 
              "https://doi.org/10.1038/sj.onc.1209473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044723213", 
              "https://doi.org/10.1038/nrg1655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018164085", 
              "https://doi.org/10.1038/35065138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011087910699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051175939", 
              "https://doi.org/10.1023/a:1011087910699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030176413", 
              "https://doi.org/10.1038/nsb895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033300049", 
              "https://doi.org/10.1038/nrc1779"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-02-27", 
        "datePublishedReg": "2007-02-27", 
        "description": "Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/sj.cr.7310149", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1107753", 
            "issn": [
              "1001-0602", 
              "1748-7838"
            ], 
            "name": "Cell Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "keywords": [
          "histone acetyl transferases", 
          "acetylation state", 
          "lysine residues", 
          "protein-protein interactions", 
          "specific lysine residues", 
          "non-histone proteins", 
          "N-terminal extension", 
          "post-translational modifications", 
          "acetylation of histones", 
          "cell cycle progression", 
          "protein lysine residues", 
          "multiprotein family", 
          "chromatin conformation", 
          "core histones", 
          "histone deacetylation", 
          "enzyme family", 
          "gene transcription", 
          "biological functions", 
          "gene expression", 
          "specialized functions", 
          "cycle progression", 
          "biological processes", 
          "acetyl transferase", 
          "molecular biology", 
          "cell survival", 
          "histones", 
          "HDAC activity", 
          "enzymatic activity", 
          "cancer therapeutics", 
          "HDAC inhibitors", 
          "residues", 
          "malignant transformation", 
          "important role", 
          "transcription", 
          "family", 
          "HDACs", 
          "biology", 
          "acetylation", 
          "HDACs", 
          "protein", 
          "enzyme", 
          "deacetylation", 
          "differentiation", 
          "transferase", 
          "expression", 
          "recruitment", 
          "activity", 
          "conformation", 
          "inhibitors", 
          "function", 
          "antineoplastic drugs", 
          "therapeutics", 
          "members", 
          "role", 
          "progression", 
          "survival", 
          "interaction", 
          "modification", 
          "addition", 
          "multitude", 
          "process", 
          "control", 
          "part", 
          "transformation", 
          "state", 
          "cancer patients", 
          "drugs", 
          "stability", 
          "influence", 
          "extension", 
          "efficacy", 
          "patients"
        ], 
        "name": "HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics", 
        "pagination": "195-211", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023212695"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/sj.cr.7310149"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17325692"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/sj.cr.7310149", 
          "https://app.dimensions.ai/details/publication/pub.1023212695"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_448.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/sj.cr.7310149"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.cr.7310149'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.cr.7310149'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.cr.7310149'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.cr.7310149'


     

    This table displays all metadata directly associated to this object as RDF triples.

    279 TRIPLES      21 PREDICATES      126 URIs      99 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/sj.cr.7310149 schema:about N48394b679d2c4e83abf05d5a5e598d32
    2 N6a1b4eb225f1475f926a66dbfcd049c5
    3 Na12a70d97556481c95a325c7227be68c
    4 Na7480fcbd43c4be59a06bac494b8436b
    5 Naea36482bd394c25b043f85f6ef59458
    6 Nc2819687f1f64a00941e7b4541b47f0e
    7 Nce5b8ab750dc46548bbffd5746bae1e7
    8 Ne5363e7922ec46689ac047a453779915
    9 Ne6d7c2a9fcea4af9a57768c36acc98f4
    10 Ne900f540848446dba795acf5f67e21b2
    11 Nf7b290ee7e694befb3bfbbb6c9cc6345
    12 anzsrc-for:06
    13 anzsrc-for:0601
    14 anzsrc-for:0604
    15 schema:author N0a9d08ff9b854bb9a5d53c9dc2867f78
    16 schema:citation sg:pub.10.1023/a:1006489328324
    17 sg:pub.10.1023/a:1006881405383
    18 sg:pub.10.1023/a:1011087910699
    19 sg:pub.10.1038/268462a0
    20 sg:pub.10.1038/35040593
    21 sg:pub.10.1038/35065132
    22 sg:pub.10.1038/35065138
    23 sg:pub.10.1038/417455a
    24 sg:pub.10.1038/43710
    25 sg:pub.10.1038/ncponc0106
    26 sg:pub.10.1038/ng907
    27 sg:pub.10.1038/nrc1779
    28 sg:pub.10.1038/nrg1639
    29 sg:pub.10.1038/nrg1655
    30 sg:pub.10.1038/nrm1761
    31 sg:pub.10.1038/nsb895
    32 sg:pub.10.1038/sj.onc.1206774
    33 sg:pub.10.1038/sj.onc.1209473
    34 schema:datePublished 2007-02-27
    35 schema:datePublishedReg 2007-02-27
    36 schema:description Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients.
    37 schema:genre article
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N72a07f7ede014128973e2e1c58c6c16a
    40 Ne9e9585438b444a2b59b1c598e254088
    41 sg:journal.1107753
    42 schema:keywords HDAC activity
    43 HDAC inhibitors
    44 HDACs
    45 N-terminal extension
    46 acetyl transferase
    47 acetylation
    48 acetylation of histones
    49 acetylation state
    50 activity
    51 addition
    52 antineoplastic drugs
    53 biological functions
    54 biological processes
    55 biology
    56 cancer patients
    57 cancer therapeutics
    58 cell cycle progression
    59 cell survival
    60 chromatin conformation
    61 conformation
    62 control
    63 core histones
    64 cycle progression
    65 deacetylation
    66 differentiation
    67 drugs
    68 efficacy
    69 enzymatic activity
    70 enzyme
    71 enzyme family
    72 expression
    73 extension
    74 family
    75 function
    76 gene expression
    77 gene transcription
    78 histone acetyl transferases
    79 histone deacetylation
    80 histones
    81 important role
    82 influence
    83 inhibitors
    84 interaction
    85 lysine residues
    86 malignant transformation
    87 members
    88 modification
    89 molecular biology
    90 multiprotein family
    91 multitude
    92 non-histone proteins
    93 part
    94 patients
    95 post-translational modifications
    96 process
    97 progression
    98 protein
    99 protein lysine residues
    100 protein-protein interactions
    101 recruitment
    102 residues
    103 role
    104 specialized functions
    105 specific lysine residues
    106 stability
    107 state
    108 survival
    109 therapeutics
    110 transcription
    111 transferase
    112 transformation
    113 schema:name HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics
    114 schema:pagination 195-211
    115 schema:productId N4e873e7edb1c412e8e51ffa0e669fa4e
    116 Nc2a28d400e044386b836330a2364d6ff
    117 Ndd4e02d8a6bd4dd382f35c4834016799
    118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023212695
    119 https://doi.org/10.1038/sj.cr.7310149
    120 schema:sdDatePublished 2022-08-04T16:57
    121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    122 schema:sdPublisher N56e9feb071dd48979909f0afd38ccaaf
    123 schema:url https://doi.org/10.1038/sj.cr.7310149
    124 sgo:license sg:explorer/license/
    125 sgo:sdDataset articles
    126 rdf:type schema:ScholarlyArticle
    127 N0a9d08ff9b854bb9a5d53c9dc2867f78 rdf:first sg:person.0753472575.83
    128 rdf:rest N34075f55415d4b6187173e91f268ae12
    129 N244570d040fb495db1417ae7b523ea01 schema:affiliation grid-institutes:None
    130 schema:familyName Jones
    131 schema:givenName Phillip
    132 rdf:type schema:Person
    133 N34075f55415d4b6187173e91f268ae12 rdf:first sg:person.01337752407.44
    134 rdf:rest Naaf2b136e278404e9b52b6584c69e523
    135 N48394b679d2c4e83abf05d5a5e598d32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Transcription, Genetic
    137 rdf:type schema:DefinedTerm
    138 N4e873e7edb1c412e8e51ffa0e669fa4e schema:name dimensions_id
    139 schema:value pub.1023212695
    140 rdf:type schema:PropertyValue
    141 N56e9feb071dd48979909f0afd38ccaaf schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 N6a1b4eb225f1475f926a66dbfcd049c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Histones
    145 rdf:type schema:DefinedTerm
    146 N72a07f7ede014128973e2e1c58c6c16a schema:issueNumber 3
    147 rdf:type schema:PublicationIssue
    148 N9bd2ccde718545c5991458136ab16d7e rdf:first sg:person.0706442517.20
    149 rdf:rest rdf:nil
    150 Na12a70d97556481c95a325c7227be68c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Molecular Biology
    152 rdf:type schema:DefinedTerm
    153 Na7480fcbd43c4be59a06bac494b8436b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Acetylation
    155 rdf:type schema:DefinedTerm
    156 Naaf2b136e278404e9b52b6584c69e523 rdf:first N244570d040fb495db1417ae7b523ea01
    157 rdf:rest Nb8b6ce25f7804a5195548e575fcd4fd8
    158 Naea36482bd394c25b043f85f6ef59458 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Models, Biological
    160 rdf:type schema:DefinedTerm
    161 Nb8b6ce25f7804a5195548e575fcd4fd8 rdf:first sg:person.01032445057.11
    162 rdf:rest N9bd2ccde718545c5991458136ab16d7e
    163 Nc2819687f1f64a00941e7b4541b47f0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Models, Molecular
    165 rdf:type schema:DefinedTerm
    166 Nc2a28d400e044386b836330a2364d6ff schema:name pubmed_id
    167 schema:value 17325692
    168 rdf:type schema:PropertyValue
    169 Nce5b8ab750dc46548bbffd5746bae1e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Animals
    171 rdf:type schema:DefinedTerm
    172 Ndd4e02d8a6bd4dd382f35c4834016799 schema:name doi
    173 schema:value 10.1038/sj.cr.7310149
    174 rdf:type schema:PropertyValue
    175 Ne5363e7922ec46689ac047a453779915 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Humans
    177 rdf:type schema:DefinedTerm
    178 Ne6d7c2a9fcea4af9a57768c36acc98f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Neoplasms
    180 rdf:type schema:DefinedTerm
    181 Ne900f540848446dba795acf5f67e21b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Histone Deacetylases
    183 rdf:type schema:DefinedTerm
    184 Ne9e9585438b444a2b59b1c598e254088 schema:volumeNumber 17
    185 rdf:type schema:PublicationVolume
    186 Nf7b290ee7e694befb3bfbbb6c9cc6345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Histone Deacetylase Inhibitors
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Biological Sciences
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Biochemistry and Cell Biology
    194 rdf:type schema:DefinedTerm
    195 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Genetics
    197 rdf:type schema:DefinedTerm
    198 sg:journal.1107753 schema:issn 1001-0602
    199 1748-7838
    200 schema:name Cell Research
    201 schema:publisher Springer Nature
    202 rdf:type schema:Periodical
    203 sg:person.01032445057.11 schema:affiliation grid-institutes:None
    204 schema:familyName Pallaoro
    205 schema:givenName Michele
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032445057.11
    207 rdf:type schema:Person
    208 sg:person.01337752407.44 schema:affiliation grid-institutes:None
    209 schema:familyName Marco
    210 schema:givenName Stefania Di
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337752407.44
    212 rdf:type schema:Person
    213 sg:person.0706442517.20 schema:affiliation grid-institutes:None
    214 schema:familyName Steinkühler
    215 schema:givenName Christian
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706442517.20
    217 rdf:type schema:Person
    218 sg:person.0753472575.83 schema:affiliation grid-institutes:None
    219 schema:familyName Gallinari
    220 schema:givenName Paola
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753472575.83
    222 rdf:type schema:Person
    223 sg:pub.10.1023/a:1006489328324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053705347
    224 https://doi.org/10.1023/a:1006489328324
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1023/a:1006881405383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049799512
    227 https://doi.org/10.1023/a:1006881405383
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1023/a:1011087910699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051175939
    230 https://doi.org/10.1023/a:1011087910699
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/268462a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007738689
    233 https://doi.org/10.1038/268462a0
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/35040593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052267439
    236 https://doi.org/10.1038/35040593
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/35065132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020526163
    239 https://doi.org/10.1038/35065132
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/35065138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018164085
    242 https://doi.org/10.1038/35065138
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/417455a schema:sameAs https://app.dimensions.ai/details/publication/pub.1050154102
    245 https://doi.org/10.1038/417455a
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/43710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049319912
    248 https://doi.org/10.1038/43710
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ncponc0106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022636192
    251 https://doi.org/10.1038/ncponc0106
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ng907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051306658
    254 https://doi.org/10.1038/ng907
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nrc1779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033300049
    257 https://doi.org/10.1038/nrc1779
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nrg1639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028882140
    260 https://doi.org/10.1038/nrg1639
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nrg1655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044723213
    263 https://doi.org/10.1038/nrg1655
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nrm1761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028604901
    266 https://doi.org/10.1038/nrm1761
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nsb895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030176413
    269 https://doi.org/10.1038/nsb895
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/sj.onc.1206774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031013098
    272 https://doi.org/10.1038/sj.onc.1206774
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/sj.onc.1209473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041124062
    275 https://doi.org/10.1038/sj.onc.1209473
    276 rdf:type schema:CreativeWork
    277 grid-institutes:None schema:alternateName Istituto di Ricerche di Biologia Molecolare “P. Angeletti”-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy
    278 schema:name Istituto di Ricerche di Biologia Molecolare “P. Angeletti”-IRBM-Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040, Pomezia, Italy
    279 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...