Comparison of standard and double reading and computer-aided detection (CAD) of interval cancers at prior negative screening mammograms: blind review View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-11

AUTHORS

S Ciatto, M Rosselli Del Turco, P Burke, C Visioli, E Paci, M Zappa

ABSTRACT

The study evaluates the role of computer-aided detection (CAD) in improving the detection of interval cancers as compared to conventional single (CONV) or double reading (DOUBLE). With this purpose, a set of 89 negative cases was seeded with 31 mammograms reported as negative and developing interval cancer in the following 2-year interval (false negative (FN)=11, minimal signs (MS)=20). A total of radiologists read the set with CONV and then with CAD. Overall, there were 589 cancer and 1691 noncancer readings with both CONV and CAD. Double reading was simulated by combining conventional readings in all 171 possible combinations of 19 radiologists, resulting in a total of 5301 cancer and 15 219 noncancer readings. Conventional single, DOUBLE and CAD readings were compared in terms of sensitivity and recall rate. Considering all 19 readings, cancer was identified in 190 or 248 of 589 readings (32.2 vs 42.1%, chi(2)=11.80, df=1, P<0.01) and recalls were 287 or 405 of 1691 readings (16.9 vs 23.9%, chi(2)=24.87, df=1, P<0.01) at CONV or CAD, respectively. When considering FN and MS cases separately, sensitivity at CONV or CAD was 50.2 or 62.6% (chi(2)=6.98, df=1, P=0.01) for FN and 22.3 or 30.7% (chi(2)=6.47, df=1, P=0.01) for MS cases, respectively. Computer-aided detection (average of 19 readings) was slightly and not significantly less sensitive (sensitivity: 42.1 vs 46.1%, chi(2)=3.24, df=1, P=0.07) but more specific (recall rate 23.9 vs 26.1%, chi(2)=3.8, df=1, P=0.04) as compared to DOUBLE (average of 171 readings). Average sensitivity for FN cases only was 62.6% for CAD and 64.8% for DOUBLE (chi(2)=0.32, df=1, P=0.58). Corresponding values for MS cases were 30.7% for CAD and 35.7% for DOUBLE (chi(2)=3.53, df=1, P=0.06). Compared to CONV, CAD allowed for improved sensitivity, though with reduced specificity, both effects being statistically significant. Computer-aided detection was almost as sensitive as DOUBLE but significantly more specific. Computer-aided detection might be used in the current practice to improve sensitivity of conventional single reading. Based on estimates of screening sensitivity and FN/MS interval cancer expected frequency, the absolute increase of screening sensitivity expected by introducing CAD-assisted reading may be estimated around 0.9%. The use of CAD as a possible surrogate to conventional DOUBLE needs to be confirmed by further studies, which should include a cost-effective analysis. More... »

PAGES

6601356

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356

DOI

http://dx.doi.org/10.1038/sj.bjc.6601356

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023046298

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14583763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciatto", 
        "givenName": "S", 
        "id": "sg:person.01174274056.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174274056.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del Turco", 
        "givenName": "M Rosselli", 
        "id": "sg:person.01310346446.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310346446.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Local Health Unit No.1, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burke", 
        "givenName": "P", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visioli", 
        "givenName": "C", 
        "id": "sg:person.01273124755.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273124755.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paci", 
        "givenName": "E", 
        "id": "sg:person.01372154307.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372154307.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zappa", 
        "givenName": "M", 
        "id": "sg:person.0673632567.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673632567.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0720-048x(02)00011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009964543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.2910460209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010874346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003300101079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014326921", 
          "https://doi.org/10.1007/s003300101079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.215.2.r00ma15554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025500456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030363453", 
          "https://doi.org/10.1038/bjc.1995.67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030363453", 
          "https://doi.org/10.1038/bjc.1995.67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096914139500200209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035366293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096914139500200209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035366293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19930915)72:6<1933::aid-cncr2820720623>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036697232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2203001282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037099942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.6.3.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.6.3.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.161.6.8249720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069318259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.184.3.1509041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076826520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.177.2.2217807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078490921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.191.1.8134580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082666946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083051040", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-11", 
    "datePublishedReg": "2003-11-01", 
    "description": "The study evaluates the role of computer-aided detection (CAD) in improving the detection of interval cancers as compared to conventional single (CONV) or double reading (DOUBLE). With this purpose, a set of 89 negative cases was seeded with 31 mammograms reported as negative and developing interval cancer in the following 2-year interval (false negative (FN)=11, minimal signs (MS)=20). A total of radiologists read the set with CONV and then with CAD. Overall, there were 589 cancer and 1691 noncancer readings with both CONV and CAD. Double reading was simulated by combining conventional readings in all 171 possible combinations of 19 radiologists, resulting in a total of 5301 cancer and 15 219 noncancer readings. Conventional single, DOUBLE and CAD readings were compared in terms of sensitivity and recall rate. Considering all 19 readings, cancer was identified in 190 or 248 of 589 readings (32.2 vs 42.1%, chi(2)=11.80, df=1, P<0.01) and recalls were 287 or 405 of 1691 readings (16.9 vs 23.9%, chi(2)=24.87, df=1, P<0.01) at CONV or CAD, respectively. When considering FN and MS cases separately, sensitivity at CONV or CAD was 50.2 or 62.6% (chi(2)=6.98, df=1, P=0.01) for FN and 22.3 or 30.7% (chi(2)=6.47, df=1, P=0.01) for MS cases, respectively. Computer-aided detection (average of 19 readings) was slightly and not significantly less sensitive (sensitivity: 42.1 vs 46.1%, chi(2)=3.24, df=1, P=0.07) but more specific (recall rate 23.9 vs 26.1%, chi(2)=3.8, df=1, P=0.04) as compared to DOUBLE (average of 171 readings). Average sensitivity for FN cases only was 62.6% for CAD and 64.8% for DOUBLE (chi(2)=0.32, df=1, P=0.58). Corresponding values for MS cases were 30.7% for CAD and 35.7% for DOUBLE (chi(2)=3.53, df=1, P=0.06). Compared to CONV, CAD allowed for improved sensitivity, though with reduced specificity, both effects being statistically significant. Computer-aided detection was almost as sensitive as DOUBLE but significantly more specific. Computer-aided detection might be used in the current practice to improve sensitivity of conventional single reading. Based on estimates of screening sensitivity and FN/MS interval cancer expected frequency, the absolute increase of screening sensitivity expected by introducing CAD-assisted reading may be estimated around 0.9%. The use of CAD as a possible surrogate to conventional DOUBLE needs to be confirmed by further studies, which should include a cost-effective analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.bjc.6601356", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017082", 
        "issn": [
          "0007-0920", 
          "1532-1827"
        ], 
        "name": "British Journal of Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "89"
      }
    ], 
    "name": "Comparison of standard and double reading and computer-aided detection (CAD) of interval cancers at prior negative screening mammograms: blind review", 
    "pagination": "6601356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6dcc0e879c623a66faeb7f335c3b4a7a1d0fae2e2a24857db6cbe6edec3d5802"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14583763"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0370635"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.bjc.6601356"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023046298"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.bjc.6601356", 
      "https://app.dimensions.ai/details/publication/pub.1023046298"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29212_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/6601356"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      50 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.bjc.6601356 schema:about N19ac44769f9940c394aa7eba2ef6ed87
2 N320c61a3ef3746bd8262ecde68f7961e
3 N616eefd164744996aed37b02654283f2
4 N623e96a498514f34a0bfb89e918869cd
5 Na05a391181644f3db207f52054b577db
6 Na795dc7f9a9e4127ae59972c1bbf5563
7 Ne3175f7cdddc4897a0a8c7567bbdd276
8 anzsrc-for:11
9 anzsrc-for:1117
10 schema:author N10bd3614b39f4d44abbb4ce0da3cd3c6
11 schema:citation sg:pub.10.1007/s003300101079
12 sg:pub.10.1038/bjc.1995.67
13 https://app.dimensions.ai/details/publication/pub.1083051040
14 https://doi.org/10.1002/1097-0142(19930915)72:6<1933::aid-cncr2820720623>3.0.co;2-n
15 https://doi.org/10.1002/ijc.2910460209
16 https://doi.org/10.1016/s0720-048x(02)00011-6
17 https://doi.org/10.1136/jms.6.3.149
18 https://doi.org/10.1148/radiol.2203001282
19 https://doi.org/10.1148/radiology.177.2.2217807
20 https://doi.org/10.1148/radiology.184.3.1509041
21 https://doi.org/10.1148/radiology.191.1.8134580
22 https://doi.org/10.1148/radiology.215.2.r00ma15554
23 https://doi.org/10.1177/096914139500200209
24 https://doi.org/10.2214/ajr.161.6.8249720
25 schema:datePublished 2003-11
26 schema:datePublishedReg 2003-11-01
27 schema:description The study evaluates the role of computer-aided detection (CAD) in improving the detection of interval cancers as compared to conventional single (CONV) or double reading (DOUBLE). With this purpose, a set of 89 negative cases was seeded with 31 mammograms reported as negative and developing interval cancer in the following 2-year interval (false negative (FN)=11, minimal signs (MS)=20). A total of radiologists read the set with CONV and then with CAD. Overall, there were 589 cancer and 1691 noncancer readings with both CONV and CAD. Double reading was simulated by combining conventional readings in all 171 possible combinations of 19 radiologists, resulting in a total of 5301 cancer and 15 219 noncancer readings. Conventional single, DOUBLE and CAD readings were compared in terms of sensitivity and recall rate. Considering all 19 readings, cancer was identified in 190 or 248 of 589 readings (32.2 vs 42.1%, chi(2)=11.80, df=1, P<0.01) and recalls were 287 or 405 of 1691 readings (16.9 vs 23.9%, chi(2)=24.87, df=1, P<0.01) at CONV or CAD, respectively. When considering FN and MS cases separately, sensitivity at CONV or CAD was 50.2 or 62.6% (chi(2)=6.98, df=1, P=0.01) for FN and 22.3 or 30.7% (chi(2)=6.47, df=1, P=0.01) for MS cases, respectively. Computer-aided detection (average of 19 readings) was slightly and not significantly less sensitive (sensitivity: 42.1 vs 46.1%, chi(2)=3.24, df=1, P=0.07) but more specific (recall rate 23.9 vs 26.1%, chi(2)=3.8, df=1, P=0.04) as compared to DOUBLE (average of 171 readings). Average sensitivity for FN cases only was 62.6% for CAD and 64.8% for DOUBLE (chi(2)=0.32, df=1, P=0.58). Corresponding values for MS cases were 30.7% for CAD and 35.7% for DOUBLE (chi(2)=3.53, df=1, P=0.06). Compared to CONV, CAD allowed for improved sensitivity, though with reduced specificity, both effects being statistically significant. Computer-aided detection was almost as sensitive as DOUBLE but significantly more specific. Computer-aided detection might be used in the current practice to improve sensitivity of conventional single reading. Based on estimates of screening sensitivity and FN/MS interval cancer expected frequency, the absolute increase of screening sensitivity expected by introducing CAD-assisted reading may be estimated around 0.9%. The use of CAD as a possible surrogate to conventional DOUBLE needs to be confirmed by further studies, which should include a cost-effective analysis.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N441610b7d9394995848222f178783e36
32 Nb837b6b0026c473d9d408202cc211c31
33 sg:journal.1017082
34 schema:name Comparison of standard and double reading and computer-aided detection (CAD) of interval cancers at prior negative screening mammograms: blind review
35 schema:pagination 6601356
36 schema:productId N19896ee51f404e5f8ebe017cd03b79fb
37 N534a1673397e4234ad19886041be9786
38 N7061fe2a82444bf5aaf65b95badcdd9c
39 Nf2836fc8167041709bda871c19b50a36
40 Nfe022c73383b4b70bef8996ed5d08445
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023046298
42 https://doi.org/10.1038/sj.bjc.6601356
43 schema:sdDatePublished 2019-04-11T11:55
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nf37f76179c904c6b877339aea91b3d22
46 schema:url https://www.nature.com/articles/6601356
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N10bd3614b39f4d44abbb4ce0da3cd3c6 rdf:first sg:person.01174274056.26
51 rdf:rest N2050f360edf74fa39038f558b1761ca2
52 N19896ee51f404e5f8ebe017cd03b79fb schema:name doi
53 schema:value 10.1038/sj.bjc.6601356
54 rdf:type schema:PropertyValue
55 N19ac44769f9940c394aa7eba2ef6ed87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Sensitivity and Specificity
57 rdf:type schema:DefinedTerm
58 N2050f360edf74fa39038f558b1761ca2 rdf:first sg:person.01310346446.37
59 rdf:rest N9d0c5af273ad48e69228fb20aa2f88c0
60 N320c61a3ef3746bd8262ecde68f7961e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Radiographic Image Interpretation, Computer-Assisted
62 rdf:type schema:DefinedTerm
63 N441610b7d9394995848222f178783e36 schema:volumeNumber 89
64 rdf:type schema:PublicationVolume
65 N534a1673397e4234ad19886041be9786 schema:name pubmed_id
66 schema:value 14583763
67 rdf:type schema:PropertyValue
68 N54482e6d03e7454982d5648bb94d82f0 rdf:first sg:person.01273124755.36
69 rdf:rest Nef79bd7c95ba4ab5b931fe2a776506e3
70 N616eefd164744996aed37b02654283f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Mammography
72 rdf:type schema:DefinedTerm
73 N623e96a498514f34a0bfb89e918869cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Mass Screening
75 rdf:type schema:DefinedTerm
76 N7061fe2a82444bf5aaf65b95badcdd9c schema:name nlm_unique_id
77 schema:value 0370635
78 rdf:type schema:PropertyValue
79 N9d0c5af273ad48e69228fb20aa2f88c0 rdf:first Nc071b6d366c442b8b9217a6f8d564e00
80 rdf:rest N54482e6d03e7454982d5648bb94d82f0
81 Na05a391181644f3db207f52054b577db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Female
83 rdf:type schema:DefinedTerm
84 Na6ed874668ad43c7bee20525dda6f8b5 schema:name Department of Radiology, Local Health Unit No.1, Turin, Italy
85 rdf:type schema:Organization
86 Na795dc7f9a9e4127ae59972c1bbf5563 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Humans
88 rdf:type schema:DefinedTerm
89 Nb837b6b0026c473d9d408202cc211c31 schema:issueNumber 9
90 rdf:type schema:PublicationIssue
91 Nc071b6d366c442b8b9217a6f8d564e00 schema:affiliation Na6ed874668ad43c7bee20525dda6f8b5
92 schema:familyName Burke
93 schema:givenName P
94 rdf:type schema:Person
95 Ne3175f7cdddc4897a0a8c7567bbdd276 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Breast Neoplasms
97 rdf:type schema:DefinedTerm
98 Nef79bd7c95ba4ab5b931fe2a776506e3 rdf:first sg:person.01372154307.39
99 rdf:rest Nfd3a011f7cec45d5ab4af4da2016e732
100 Nf2836fc8167041709bda871c19b50a36 schema:name dimensions_id
101 schema:value pub.1023046298
102 rdf:type schema:PropertyValue
103 Nf37f76179c904c6b877339aea91b3d22 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nfd3a011f7cec45d5ab4af4da2016e732 rdf:first sg:person.0673632567.20
106 rdf:rest rdf:nil
107 Nfe022c73383b4b70bef8996ed5d08445 schema:name readcube_id
108 schema:value 6dcc0e879c623a66faeb7f335c3b4a7a1d0fae2e2a24857db6cbe6edec3d5802
109 rdf:type schema:PropertyValue
110 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
111 schema:name Medical and Health Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
114 schema:name Public Health and Health Services
115 rdf:type schema:DefinedTerm
116 sg:journal.1017082 schema:issn 0007-0920
117 1532-1827
118 schema:name British Journal of Cancer
119 rdf:type schema:Periodical
120 sg:person.01174274056.26 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
121 schema:familyName Ciatto
122 schema:givenName S
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174274056.26
124 rdf:type schema:Person
125 sg:person.01273124755.36 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
126 schema:familyName Visioli
127 schema:givenName C
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273124755.36
129 rdf:type schema:Person
130 sg:person.01310346446.37 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
131 schema:familyName Del Turco
132 schema:givenName M Rosselli
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310346446.37
134 rdf:type schema:Person
135 sg:person.01372154307.39 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
136 schema:familyName Paci
137 schema:givenName E
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372154307.39
139 rdf:type schema:Person
140 sg:person.0673632567.20 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
141 schema:familyName Zappa
142 schema:givenName M
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673632567.20
144 rdf:type schema:Person
145 sg:pub.10.1007/s003300101079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014326921
146 https://doi.org/10.1007/s003300101079
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/bjc.1995.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030363453
149 https://doi.org/10.1038/bjc.1995.67
150 rdf:type schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1083051040 schema:CreativeWork
152 https://doi.org/10.1002/1097-0142(19930915)72:6<1933::aid-cncr2820720623>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1036697232
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/ijc.2910460209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010874346
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0720-048x(02)00011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009964543
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1136/jms.6.3.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062818255
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1148/radiol.2203001282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037099942
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1148/radiology.177.2.2217807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078490921
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1148/radiology.184.3.1509041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076826520
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1148/radiology.191.1.8134580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082666946
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1148/radiology.215.2.r00ma15554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025500456
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1177/096914139500200209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035366293
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2214/ajr.161.6.8249720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069318259
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.417623.5 schema:alternateName Istituto per lo Studio e la Prevenzione Oncologica
175 schema:name Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...