Comparison of standard and double reading and computer-aided detection (CAD) of interval cancers at prior negative screening mammograms: blind review View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-11

AUTHORS

S Ciatto, M Rosselli Del Turco, P Burke, C Visioli, E Paci, M Zappa

ABSTRACT

The study evaluates the role of computer-aided detection (CAD) in improving the detection of interval cancers as compared to conventional single (CONV) or double reading (DOUBLE). With this purpose, a set of 89 negative cases was seeded with 31 mammograms reported as negative and developing interval cancer in the following 2-year interval (false negative (FN)=11, minimal signs (MS)=20). A total of radiologists read the set with CONV and then with CAD. Overall, there were 589 cancer and 1691 noncancer readings with both CONV and CAD. Double reading was simulated by combining conventional readings in all 171 possible combinations of 19 radiologists, resulting in a total of 5301 cancer and 15 219 noncancer readings. Conventional single, DOUBLE and CAD readings were compared in terms of sensitivity and recall rate. Considering all 19 readings, cancer was identified in 190 or 248 of 589 readings (32.2 vs 42.1%, chi(2)=11.80, df=1, P<0.01) and recalls were 287 or 405 of 1691 readings (16.9 vs 23.9%, chi(2)=24.87, df=1, P<0.01) at CONV or CAD, respectively. When considering FN and MS cases separately, sensitivity at CONV or CAD was 50.2 or 62.6% (chi(2)=6.98, df=1, P=0.01) for FN and 22.3 or 30.7% (chi(2)=6.47, df=1, P=0.01) for MS cases, respectively. Computer-aided detection (average of 19 readings) was slightly and not significantly less sensitive (sensitivity: 42.1 vs 46.1%, chi(2)=3.24, df=1, P=0.07) but more specific (recall rate 23.9 vs 26.1%, chi(2)=3.8, df=1, P=0.04) as compared to DOUBLE (average of 171 readings). Average sensitivity for FN cases only was 62.6% for CAD and 64.8% for DOUBLE (chi(2)=0.32, df=1, P=0.58). Corresponding values for MS cases were 30.7% for CAD and 35.7% for DOUBLE (chi(2)=3.53, df=1, P=0.06). Compared to CONV, CAD allowed for improved sensitivity, though with reduced specificity, both effects being statistically significant. Computer-aided detection was almost as sensitive as DOUBLE but significantly more specific. Computer-aided detection might be used in the current practice to improve sensitivity of conventional single reading. Based on estimates of screening sensitivity and FN/MS interval cancer expected frequency, the absolute increase of screening sensitivity expected by introducing CAD-assisted reading may be estimated around 0.9%. The use of CAD as a possible surrogate to conventional DOUBLE needs to be confirmed by further studies, which should include a cost-effective analysis. More... »

PAGES

6601356

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356

DOI

http://dx.doi.org/10.1038/sj.bjc.6601356

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023046298

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14583763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciatto", 
        "givenName": "S", 
        "id": "sg:person.01174274056.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174274056.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del Turco", 
        "givenName": "M Rosselli", 
        "id": "sg:person.01310346446.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310346446.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Local Health Unit No.1, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burke", 
        "givenName": "P", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visioli", 
        "givenName": "C", 
        "id": "sg:person.01273124755.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273124755.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paci", 
        "givenName": "E", 
        "id": "sg:person.01372154307.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372154307.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per lo Studio e la Prevenzione Oncologica", 
          "id": "https://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zappa", 
        "givenName": "M", 
        "id": "sg:person.0673632567.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673632567.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0720-048x(02)00011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009964543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.2910460209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010874346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003300101079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014326921", 
          "https://doi.org/10.1007/s003300101079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.215.2.r00ma15554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025500456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030363453", 
          "https://doi.org/10.1038/bjc.1995.67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1995.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030363453", 
          "https://doi.org/10.1038/bjc.1995.67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096914139500200209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035366293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096914139500200209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035366293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19930915)72:6<1933::aid-cncr2820720623>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036697232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2203001282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037099942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.6.3.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.6.3.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.161.6.8249720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069318259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.184.3.1509041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076826520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.177.2.2217807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078490921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.191.1.8134580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082666946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083051040", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-11", 
    "datePublishedReg": "2003-11-01", 
    "description": "The study evaluates the role of computer-aided detection (CAD) in improving the detection of interval cancers as compared to conventional single (CONV) or double reading (DOUBLE). With this purpose, a set of 89 negative cases was seeded with 31 mammograms reported as negative and developing interval cancer in the following 2-year interval (false negative (FN)=11, minimal signs (MS)=20). A total of radiologists read the set with CONV and then with CAD. Overall, there were 589 cancer and 1691 noncancer readings with both CONV and CAD. Double reading was simulated by combining conventional readings in all 171 possible combinations of 19 radiologists, resulting in a total of 5301 cancer and 15 219 noncancer readings. Conventional single, DOUBLE and CAD readings were compared in terms of sensitivity and recall rate. Considering all 19 readings, cancer was identified in 190 or 248 of 589 readings (32.2 vs 42.1%, chi(2)=11.80, df=1, P<0.01) and recalls were 287 or 405 of 1691 readings (16.9 vs 23.9%, chi(2)=24.87, df=1, P<0.01) at CONV or CAD, respectively. When considering FN and MS cases separately, sensitivity at CONV or CAD was 50.2 or 62.6% (chi(2)=6.98, df=1, P=0.01) for FN and 22.3 or 30.7% (chi(2)=6.47, df=1, P=0.01) for MS cases, respectively. Computer-aided detection (average of 19 readings) was slightly and not significantly less sensitive (sensitivity: 42.1 vs 46.1%, chi(2)=3.24, df=1, P=0.07) but more specific (recall rate 23.9 vs 26.1%, chi(2)=3.8, df=1, P=0.04) as compared to DOUBLE (average of 171 readings). Average sensitivity for FN cases only was 62.6% for CAD and 64.8% for DOUBLE (chi(2)=0.32, df=1, P=0.58). Corresponding values for MS cases were 30.7% for CAD and 35.7% for DOUBLE (chi(2)=3.53, df=1, P=0.06). Compared to CONV, CAD allowed for improved sensitivity, though with reduced specificity, both effects being statistically significant. Computer-aided detection was almost as sensitive as DOUBLE but significantly more specific. Computer-aided detection might be used in the current practice to improve sensitivity of conventional single reading. Based on estimates of screening sensitivity and FN/MS interval cancer expected frequency, the absolute increase of screening sensitivity expected by introducing CAD-assisted reading may be estimated around 0.9%. The use of CAD as a possible surrogate to conventional DOUBLE needs to be confirmed by further studies, which should include a cost-effective analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sj.bjc.6601356", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017082", 
        "issn": [
          "0007-0920", 
          "1532-1827"
        ], 
        "name": "British Journal of Cancer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "89"
      }
    ], 
    "name": "Comparison of standard and double reading and computer-aided detection (CAD) of interval cancers at prior negative screening mammograms: blind review", 
    "pagination": "6601356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6dcc0e879c623a66faeb7f335c3b4a7a1d0fae2e2a24857db6cbe6edec3d5802"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14583763"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0370635"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sj.bjc.6601356"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023046298"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sj.bjc.6601356", 
      "https://app.dimensions.ai/details/publication/pub.1023046298"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29212_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/6601356"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sj.bjc.6601356'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      50 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sj.bjc.6601356 schema:about N42ec642bdc164b48aa4f2ded0fada82a
2 N5a6aa59f59e54905858cbda44394c194
3 Nb8213341bf7e4228ab58adcf24021dc4
4 Nb8b66c1fb1af43138ef8d0b2e81f28b4
5 Nbc692f20cb1041a5bb91d61282c6ebb0
6 Nce2a795ef12c454fa6727d0a691b3d9e
7 Nfc6ba1c36dff491091fcf935487e0094
8 anzsrc-for:11
9 anzsrc-for:1117
10 schema:author Nbc5f4ab34e7a4cc5beb5e7976748494e
11 schema:citation sg:pub.10.1007/s003300101079
12 sg:pub.10.1038/bjc.1995.67
13 https://app.dimensions.ai/details/publication/pub.1083051040
14 https://doi.org/10.1002/1097-0142(19930915)72:6<1933::aid-cncr2820720623>3.0.co;2-n
15 https://doi.org/10.1002/ijc.2910460209
16 https://doi.org/10.1016/s0720-048x(02)00011-6
17 https://doi.org/10.1136/jms.6.3.149
18 https://doi.org/10.1148/radiol.2203001282
19 https://doi.org/10.1148/radiology.177.2.2217807
20 https://doi.org/10.1148/radiology.184.3.1509041
21 https://doi.org/10.1148/radiology.191.1.8134580
22 https://doi.org/10.1148/radiology.215.2.r00ma15554
23 https://doi.org/10.1177/096914139500200209
24 https://doi.org/10.2214/ajr.161.6.8249720
25 schema:datePublished 2003-11
26 schema:datePublishedReg 2003-11-01
27 schema:description The study evaluates the role of computer-aided detection (CAD) in improving the detection of interval cancers as compared to conventional single (CONV) or double reading (DOUBLE). With this purpose, a set of 89 negative cases was seeded with 31 mammograms reported as negative and developing interval cancer in the following 2-year interval (false negative (FN)=11, minimal signs (MS)=20). A total of radiologists read the set with CONV and then with CAD. Overall, there were 589 cancer and 1691 noncancer readings with both CONV and CAD. Double reading was simulated by combining conventional readings in all 171 possible combinations of 19 radiologists, resulting in a total of 5301 cancer and 15 219 noncancer readings. Conventional single, DOUBLE and CAD readings were compared in terms of sensitivity and recall rate. Considering all 19 readings, cancer was identified in 190 or 248 of 589 readings (32.2 vs 42.1%, chi(2)=11.80, df=1, P<0.01) and recalls were 287 or 405 of 1691 readings (16.9 vs 23.9%, chi(2)=24.87, df=1, P<0.01) at CONV or CAD, respectively. When considering FN and MS cases separately, sensitivity at CONV or CAD was 50.2 or 62.6% (chi(2)=6.98, df=1, P=0.01) for FN and 22.3 or 30.7% (chi(2)=6.47, df=1, P=0.01) for MS cases, respectively. Computer-aided detection (average of 19 readings) was slightly and not significantly less sensitive (sensitivity: 42.1 vs 46.1%, chi(2)=3.24, df=1, P=0.07) but more specific (recall rate 23.9 vs 26.1%, chi(2)=3.8, df=1, P=0.04) as compared to DOUBLE (average of 171 readings). Average sensitivity for FN cases only was 62.6% for CAD and 64.8% for DOUBLE (chi(2)=0.32, df=1, P=0.58). Corresponding values for MS cases were 30.7% for CAD and 35.7% for DOUBLE (chi(2)=3.53, df=1, P=0.06). Compared to CONV, CAD allowed for improved sensitivity, though with reduced specificity, both effects being statistically significant. Computer-aided detection was almost as sensitive as DOUBLE but significantly more specific. Computer-aided detection might be used in the current practice to improve sensitivity of conventional single reading. Based on estimates of screening sensitivity and FN/MS interval cancer expected frequency, the absolute increase of screening sensitivity expected by introducing CAD-assisted reading may be estimated around 0.9%. The use of CAD as a possible surrogate to conventional DOUBLE needs to be confirmed by further studies, which should include a cost-effective analysis.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N26515ed5752043998b546c00f08a09f0
32 N78b1613ae2b44763a66a298e8930ebce
33 sg:journal.1017082
34 schema:name Comparison of standard and double reading and computer-aided detection (CAD) of interval cancers at prior negative screening mammograms: blind review
35 schema:pagination 6601356
36 schema:productId N18e077b2a4aa4660813b9d0d2b06373d
37 N40d79d68b86b4db39f4a526dff9eab9c
38 N6945f510c02745ca929bc3c255d3de30
39 Ne96e15b63ad047cdbf1a83ed50af8169
40 Nfc0c7688bdfb4499b6a7664b8b4d1194
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023046298
42 https://doi.org/10.1038/sj.bjc.6601356
43 schema:sdDatePublished 2019-04-11T11:55
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ne74bb05fba614074a2c77191e5ec0f8b
46 schema:url https://www.nature.com/articles/6601356
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N1531678c6e6c4efcad17daf6c97c02ac rdf:first sg:person.0673632567.20
51 rdf:rest rdf:nil
52 N18e077b2a4aa4660813b9d0d2b06373d schema:name pubmed_id
53 schema:value 14583763
54 rdf:type schema:PropertyValue
55 N26515ed5752043998b546c00f08a09f0 schema:issueNumber 9
56 rdf:type schema:PublicationIssue
57 N408214e9a12243629ceef160d24bfc30 schema:name Department of Radiology, Local Health Unit No.1, Turin, Italy
58 rdf:type schema:Organization
59 N40d79d68b86b4db39f4a526dff9eab9c schema:name doi
60 schema:value 10.1038/sj.bjc.6601356
61 rdf:type schema:PropertyValue
62 N42ec642bdc164b48aa4f2ded0fada82a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Mammography
64 rdf:type schema:DefinedTerm
65 N5a6aa59f59e54905858cbda44394c194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Female
67 rdf:type schema:DefinedTerm
68 N6945f510c02745ca929bc3c255d3de30 schema:name readcube_id
69 schema:value 6dcc0e879c623a66faeb7f335c3b4a7a1d0fae2e2a24857db6cbe6edec3d5802
70 rdf:type schema:PropertyValue
71 N78b1613ae2b44763a66a298e8930ebce schema:volumeNumber 89
72 rdf:type schema:PublicationVolume
73 Nb8213341bf7e4228ab58adcf24021dc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 Nb8b66c1fb1af43138ef8d0b2e81f28b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Breast Neoplasms
78 rdf:type schema:DefinedTerm
79 Nbba951db29ac4e8a9187974e2142df72 rdf:first sg:person.01273124755.36
80 rdf:rest Ndef878221d2044508065605b7812700b
81 Nbc5f4ab34e7a4cc5beb5e7976748494e rdf:first sg:person.01174274056.26
82 rdf:rest Nd056cb21c45b45daabc9230797c861bf
83 Nbc692f20cb1041a5bb91d61282c6ebb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Radiographic Image Interpretation, Computer-Assisted
85 rdf:type schema:DefinedTerm
86 Nbf6432c0c1bc4ea280a7a34ff86e1243 schema:affiliation N408214e9a12243629ceef160d24bfc30
87 schema:familyName Burke
88 schema:givenName P
89 rdf:type schema:Person
90 Nce2a795ef12c454fa6727d0a691b3d9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Sensitivity and Specificity
92 rdf:type schema:DefinedTerm
93 Nd056cb21c45b45daabc9230797c861bf rdf:first sg:person.01310346446.37
94 rdf:rest Ne28328e3b9ba4fda8418cd98f7af1430
95 Ndef878221d2044508065605b7812700b rdf:first sg:person.01372154307.39
96 rdf:rest N1531678c6e6c4efcad17daf6c97c02ac
97 Ne28328e3b9ba4fda8418cd98f7af1430 rdf:first Nbf6432c0c1bc4ea280a7a34ff86e1243
98 rdf:rest Nbba951db29ac4e8a9187974e2142df72
99 Ne74bb05fba614074a2c77191e5ec0f8b schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Ne96e15b63ad047cdbf1a83ed50af8169 schema:name nlm_unique_id
102 schema:value 0370635
103 rdf:type schema:PropertyValue
104 Nfc0c7688bdfb4499b6a7664b8b4d1194 schema:name dimensions_id
105 schema:value pub.1023046298
106 rdf:type schema:PropertyValue
107 Nfc6ba1c36dff491091fcf935487e0094 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Mass Screening
109 rdf:type schema:DefinedTerm
110 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
111 schema:name Medical and Health Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
114 schema:name Public Health and Health Services
115 rdf:type schema:DefinedTerm
116 sg:journal.1017082 schema:issn 0007-0920
117 1532-1827
118 schema:name British Journal of Cancer
119 rdf:type schema:Periodical
120 sg:person.01174274056.26 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
121 schema:familyName Ciatto
122 schema:givenName S
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174274056.26
124 rdf:type schema:Person
125 sg:person.01273124755.36 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
126 schema:familyName Visioli
127 schema:givenName C
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273124755.36
129 rdf:type schema:Person
130 sg:person.01310346446.37 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
131 schema:familyName Del Turco
132 schema:givenName M Rosselli
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310346446.37
134 rdf:type schema:Person
135 sg:person.01372154307.39 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
136 schema:familyName Paci
137 schema:givenName E
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372154307.39
139 rdf:type schema:Person
140 sg:person.0673632567.20 schema:affiliation https://www.grid.ac/institutes/grid.417623.5
141 schema:familyName Zappa
142 schema:givenName M
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673632567.20
144 rdf:type schema:Person
145 sg:pub.10.1007/s003300101079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014326921
146 https://doi.org/10.1007/s003300101079
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/bjc.1995.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030363453
149 https://doi.org/10.1038/bjc.1995.67
150 rdf:type schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1083051040 schema:CreativeWork
152 https://doi.org/10.1002/1097-0142(19930915)72:6<1933::aid-cncr2820720623>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1036697232
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/ijc.2910460209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010874346
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0720-048x(02)00011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009964543
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1136/jms.6.3.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062818255
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1148/radiol.2203001282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037099942
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1148/radiology.177.2.2217807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078490921
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1148/radiology.184.3.1509041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076826520
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1148/radiology.191.1.8134580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082666946
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1148/radiology.215.2.r00ma15554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025500456
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1177/096914139500200209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035366293
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2214/ajr.161.6.8249720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069318259
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.417623.5 schema:alternateName Istituto per lo Studio e la Prevenzione Oncologica
175 schema:name Centro per lo Studio e la Prevenzione Oncologica, Viale A. Volta 171, I-50131 Firenze, Italy
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...