Three-dimensional time-resolved trajectories from laboratory insect swarms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-05

AUTHORS

Michael Sinhuber, Kasper van der Vaart, Rui Ni, James G. Puckett, Douglas H. Kelley, Nicholas T. Ouellette

ABSTRACT

Aggregations of animals display complex and dynamic behaviour, both at the individual level and on the level of the group as a whole. Often, this behaviour is collective, so that the group exhibits properties that are distinct from those of the individuals. In insect swarms, the motion of individuals is typically convoluted, and swarms display neither net polarization nor correlation. The swarms themselves, however, remain nearly stationary and maintain their cohesion even in noisy natural environments. This behaviour stands in contrast with other forms of collective animal behaviour, such as flocking, schooling, or herding, where the motion of individuals is more coordinated, and thus swarms provide a powerful way to study the underpinnings of collective behaviour as distinct from global order. Here, we provide a data set of three-dimensional, time-resolved trajectories, including positions, velocities, and accelerations, of individual insects in laboratory insect swarms. The data can be used to study the collective as a whole as well as the dynamics and behaviour of individuals within the swarm. More... »

PAGES

190036

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sdata.2019.36

DOI

http://dx.doi.org/10.1038/sdata.2019.36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112544142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0608", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Zoology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinhuber", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Vaart", 
        "givenName": "Kasper", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ni", 
        "givenName": "Rui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gettysburg College", 
          "id": "https://www.grid.ac/institutes/grid.256322.2", 
          "name": [
            "Department of Physics, Gettysburg College, Gettysburg, PA 17325, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puckett", 
        "givenName": "James G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rochester", 
          "id": "https://www.grid.ac/institutes/grid.16416.34", 
          "name": [
            "Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelley", 
        "givenName": "Douglas H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouellette", 
        "givenName": "Nicholas T.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.anbehav.2008.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005500250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010736314", 
          "https://doi.org/10.1038/nature10164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1118633109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011561478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-0715-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018085300", 
          "https://doi.org/10.1007/978-94-011-0715-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2004.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022018693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4039/ent105165-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022961118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/19/7/075105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024268007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-005-0068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024590251", 
          "https://doi.org/10.1007/s00348-005-0068-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-005-0068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024590251", 
          "https://doi.org/10.1007/s00348-005-0068-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2002.3065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026503384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2015-50077-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028808942", 
          "https://doi.org/10.1140/epjst/e2015-50077-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031069743", 
          "https://doi.org/10.1038/nature12137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040363179", 
          "https://doi.org/10.1038/srep01073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2014.0710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043042050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/6/109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045365367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048442480", 
          "https://doi.org/10.1038/srep04766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/9/095015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/18/7/073042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059137591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/13/4/045002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059143551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.118104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.118104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jra.1987.1087109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061308670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1245842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1254295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5411.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3494600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070343175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2017-11531-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084861139", 
          "https://doi.org/10.1140/epje/i2017-11531-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2017-11531-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084861139", 
          "https://doi.org/10.1140/epje/i2017-11531-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.178003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092383149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.178003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092383149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-018-0107-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103931842", 
          "https://doi.org/10.1038/s41567-018-0107-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2018.0653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107802799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2018.0653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107802799"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-05", 
    "datePublishedReg": "2019-03-05", 
    "description": "Aggregations of animals display complex and dynamic behaviour, both at the individual level and on the level of the group as a whole. Often, this behaviour is collective, so that the group exhibits properties that are distinct from those of the individuals. In insect swarms, the motion of individuals is typically convoluted, and swarms display neither net polarization nor correlation. The swarms themselves, however, remain nearly stationary and maintain their cohesion even in noisy natural environments. This behaviour stands in contrast with other forms of collective animal behaviour, such as flocking, schooling, or herding, where the motion of individuals is more coordinated, and thus swarms provide a powerful way to study the underpinnings of collective behaviour as distinct from global order. Here, we provide a data set of three-dimensional, time-resolved trajectories, including positions, velocities, and accelerations, of individual insects in laboratory insect swarms. The data can be used to study the collective as a whole as well as the dynamics and behaviour of individuals within the swarm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sdata.2019.36", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7518380", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Three-dimensional time-resolved trajectories from laboratory insect swarms", 
    "pagination": "190036", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5097e34e349d79490bfc891bde91f97154630a9b870629cd6994cd5981262008"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sdata.2019.36"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112544142"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sdata.2019.36", 
      "https://app.dimensions.ai/details/publication/pub.1112544142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60348_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/sdata201936"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.36'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      54 URIs      17 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sdata.2019.36 schema:about anzsrc-for:06
2 anzsrc-for:0608
3 schema:author Nbce2442ff1504b4991cc48bae4e9d0c8
4 schema:citation sg:pub.10.1007/978-94-011-0715-0_9
5 sg:pub.10.1007/s00348-005-0068-7
6 sg:pub.10.1038/nature10164
7 sg:pub.10.1038/nature12137
8 sg:pub.10.1038/s41567-018-0107-y
9 sg:pub.10.1038/srep01073
10 sg:pub.10.1038/srep04766
11 sg:pub.10.1140/epje/i2017-11531-7
12 sg:pub.10.1140/epjst/e2015-50077-5
13 https://doi.org/10.1006/jtbi.2002.3065
14 https://doi.org/10.1016/j.anbehav.2008.02.004
15 https://doi.org/10.1016/j.physd.2004.01.041
16 https://doi.org/10.1073/pnas.1118633109
17 https://doi.org/10.1088/0957-0233/19/7/075105
18 https://doi.org/10.1088/1367-2630/15/9/095015
19 https://doi.org/10.1088/1367-2630/18/7/073042
20 https://doi.org/10.1088/1367-2630/8/6/109
21 https://doi.org/10.1088/1478-3975/13/4/045002
22 https://doi.org/10.1098/rsif.2014.0710
23 https://doi.org/10.1098/rsif.2018.0653
24 https://doi.org/10.1103/physrevlett.114.258103
25 https://doi.org/10.1103/physrevlett.115.118104
26 https://doi.org/10.1103/physrevlett.119.178003
27 https://doi.org/10.1109/jra.1987.1087109
28 https://doi.org/10.1126/science.1245842
29 https://doi.org/10.1126/science.1254295
30 https://doi.org/10.1126/science.284.5411.99
31 https://doi.org/10.2307/3494600
32 https://doi.org/10.4039/ent105165-1
33 schema:datePublished 2019-03-05
34 schema:datePublishedReg 2019-03-05
35 schema:description Aggregations of animals display complex and dynamic behaviour, both at the individual level and on the level of the group as a whole. Often, this behaviour is collective, so that the group exhibits properties that are distinct from those of the individuals. In insect swarms, the motion of individuals is typically convoluted, and swarms display neither net polarization nor correlation. The swarms themselves, however, remain nearly stationary and maintain their cohesion even in noisy natural environments. This behaviour stands in contrast with other forms of collective animal behaviour, such as flocking, schooling, or herding, where the motion of individuals is more coordinated, and thus swarms provide a powerful way to study the underpinnings of collective behaviour as distinct from global order. Here, we provide a data set of three-dimensional, time-resolved trajectories, including positions, velocities, and accelerations, of individual insects in laboratory insect swarms. The data can be used to study the collective as a whole as well as the dynamics and behaviour of individuals within the swarm.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N328ce5f57ef7418b8e56df599c53459d
40 sg:journal.1050678
41 schema:name Three-dimensional time-resolved trajectories from laboratory insect swarms
42 schema:pagination 190036
43 schema:productId N244aac1efd8e446da3f8c271e095110d
44 N71a4b92d19d543afb99ed767b7d04263
45 Ncb45a12be2264b698c47fb914a34445d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544142
47 https://doi.org/10.1038/sdata.2019.36
48 schema:sdDatePublished 2019-04-11T11:02
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N78a3b1f9ada44abe8784823fff0e2677
51 schema:url https://www.nature.com/articles/sdata201936
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N07d12badf90d4dc49256129c8793ea1f schema:affiliation https://www.grid.ac/institutes/grid.168010.e
56 schema:familyName Sinhuber
57 schema:givenName Michael
58 rdf:type schema:Person
59 N0f7b48d1bbb34ffeac29819274598324 rdf:first Nd4b768068c7441b7b74eb54d4391b3fd
60 rdf:rest rdf:nil
61 N1a9760fb923943149849c9d6c7c9fcd7 schema:affiliation https://www.grid.ac/institutes/grid.256322.2
62 schema:familyName Puckett
63 schema:givenName James G.
64 rdf:type schema:Person
65 N244aac1efd8e446da3f8c271e095110d schema:name dimensions_id
66 schema:value pub.1112544142
67 rdf:type schema:PropertyValue
68 N328ce5f57ef7418b8e56df599c53459d schema:volumeNumber 6
69 rdf:type schema:PublicationVolume
70 N4b57b08fc86c4fe3aedaef93d35a6cdd schema:affiliation https://www.grid.ac/institutes/grid.16416.34
71 schema:familyName Kelley
72 schema:givenName Douglas H.
73 rdf:type schema:Person
74 N5dfca67d3738453dbfe800c10d4d3fbb rdf:first N4b57b08fc86c4fe3aedaef93d35a6cdd
75 rdf:rest N0f7b48d1bbb34ffeac29819274598324
76 N71a4b92d19d543afb99ed767b7d04263 schema:name readcube_id
77 schema:value 5097e34e349d79490bfc891bde91f97154630a9b870629cd6994cd5981262008
78 rdf:type schema:PropertyValue
79 N78a3b1f9ada44abe8784823fff0e2677 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N826cb6ac82dc4625bb02c30171ffd909 rdf:first Nd1b1b3a7f2ce4402a98d8b4ff64eeb14
82 rdf:rest Nd75b984cc20c4d94b236c8c52b4194d4
83 N89c80a76d17b4a99b4da17adf56cf7ab rdf:first Nc0f5f8330c324e3eaad50f35d89d0e53
84 rdf:rest N826cb6ac82dc4625bb02c30171ffd909
85 Nbce2442ff1504b4991cc48bae4e9d0c8 rdf:first N07d12badf90d4dc49256129c8793ea1f
86 rdf:rest N89c80a76d17b4a99b4da17adf56cf7ab
87 Nc0f5f8330c324e3eaad50f35d89d0e53 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
88 schema:familyName van der Vaart
89 schema:givenName Kasper
90 rdf:type schema:Person
91 Ncb45a12be2264b698c47fb914a34445d schema:name doi
92 schema:value 10.1038/sdata.2019.36
93 rdf:type schema:PropertyValue
94 Nd1b1b3a7f2ce4402a98d8b4ff64eeb14 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
95 schema:familyName Ni
96 schema:givenName Rui
97 rdf:type schema:Person
98 Nd4b768068c7441b7b74eb54d4391b3fd schema:affiliation https://www.grid.ac/institutes/grid.168010.e
99 schema:familyName Ouellette
100 schema:givenName Nicholas T.
101 rdf:type schema:Person
102 Nd75b984cc20c4d94b236c8c52b4194d4 rdf:first N1a9760fb923943149849c9d6c7c9fcd7
103 rdf:rest N5dfca67d3738453dbfe800c10d4d3fbb
104 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
105 schema:name Biological Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0608 schema:inDefinedTermSet anzsrc-for:
108 schema:name Zoology
109 rdf:type schema:DefinedTerm
110 sg:grant.7518380 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2019.36
111 rdf:type schema:MonetaryGrant
112 sg:journal.1050678 schema:issn 2052-4463
113 schema:name Scientific Data
114 rdf:type schema:Periodical
115 sg:pub.10.1007/978-94-011-0715-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018085300
116 https://doi.org/10.1007/978-94-011-0715-0_9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00348-005-0068-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024590251
119 https://doi.org/10.1007/s00348-005-0068-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature10164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010736314
122 https://doi.org/10.1038/nature10164
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature12137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031069743
125 https://doi.org/10.1038/nature12137
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/s41567-018-0107-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103931842
128 https://doi.org/10.1038/s41567-018-0107-y
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/srep01073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040363179
131 https://doi.org/10.1038/srep01073
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/srep04766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048442480
134 https://doi.org/10.1038/srep04766
135 rdf:type schema:CreativeWork
136 sg:pub.10.1140/epje/i2017-11531-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084861139
137 https://doi.org/10.1140/epje/i2017-11531-7
138 rdf:type schema:CreativeWork
139 sg:pub.10.1140/epjst/e2015-50077-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028808942
140 https://doi.org/10.1140/epjst/e2015-50077-5
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1006/jtbi.2002.3065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026503384
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.anbehav.2008.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005500250
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.physd.2004.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022018693
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.1118633109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011561478
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1088/0957-0233/19/7/075105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024268007
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/1367-2630/15/9/095015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136274
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/1367-2630/18/7/073042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137591
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1088/1367-2630/8/6/109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045365367
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/1478-3975/13/4/045002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059143551
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1098/rsif.2014.0710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043042050
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1098/rsif.2018.0653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107802799
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.114.258103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763758
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.115.118104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764089
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.119.178003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092383149
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/jra.1987.1087109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061308670
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.1245842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469088
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.1254295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470000
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.284.5411.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564782
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2307/3494600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070343175
179 rdf:type schema:CreativeWork
180 https://doi.org/10.4039/ent105165-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022961118
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.16416.34 schema:alternateName University of Rochester
183 schema:name Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
186 schema:name Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
189 schema:name Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.256322.2 schema:alternateName Gettysburg College
192 schema:name Department of Physics, Gettysburg College, Gettysburg, PA 17325, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...