High resolution annual average air pollution concentration maps for the Netherlands View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-12

AUTHORS

Oliver Schmitz, Rob Beelen, Maciej Strak, Gerard Hoek, Ivan Soenario, Bert Brunekreef, Ilonca Vaartjes, Martin J. Dijst, Diederick E. Grobbee, Derek Karssenberg

ABSTRACT

Long-term exposure to air pollution is considered a major public health concern and has been related to overall mortality and various diseases such as respiratory and cardiovascular disease. Due to the spatial variability of air pollution concentrations, assessment of individual exposure to air pollution requires spatial datasets at high resolution. Combining detailed air pollution maps with personal mobility and activity patterns allows for an improved exposure assessment. We present high-resolution datasets for the Netherlands providing average ambient air pollution concentration values for the year 2009 for NO2, NOx, PM2.5, PM2.5absorbance and PM10. The raster datasets on 5×5 m grid cover the entire Netherlands and were calculated using the land use regression models originating from the European Study of Cohorts for Air Pollution Effects (ESCAPE) project. Additional datasets with nationwide and regional measurements were used to evaluate the generated concentration maps. The presented datasets allow for spatial aggregations on different scales, nationwide individual exposure assessment, and the integration of activity patterns in the exposure estimation of individuals. More... »

PAGES

190035

References to SciGraph publications

  • 2005-03. A review and evaluation of intraurban air pollution exposure models in JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY
  • 2015-05. Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2018-10-30. Present and future Köppen-Geiger climate classification maps at 1-km resolution in SCIENTIFIC DATA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/sdata.2019.35

    DOI

    http://dx.doi.org/10.1038/sdata.2019.35

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112684203

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30860500


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands", 
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmitz", 
            "givenName": "Oliver", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands", 
                "Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beelen", 
            "givenName": "Rob", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands", 
                "Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strak", 
            "givenName": "Maciej", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands", 
                "Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoek", 
            "givenName": "Gerard", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands", 
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soenario", 
            "givenName": "Ivan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands", 
                "Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brunekreef", 
            "givenName": "Bert", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Medical Center Utrecht", 
              "id": "https://www.grid.ac/institutes/grid.7692.a", 
              "name": [
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands", 
                "Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vaartjes", 
            "givenName": "Ilonca", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands", 
                "Luxembourg Institute of Socio-Economic Research (LISER), Esch-sur-Alzette, Luxembourg", 
                "Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dijst", 
            "givenName": "Martin J.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Medical Center Utrecht", 
              "id": "https://www.grid.ac/institutes/grid.7692.a", 
              "name": [
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands", 
                "Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grobbee", 
            "givenName": "Diederick E.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands", 
                "Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karssenberg", 
            "givenName": "Derek", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.envres.2016.02.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000962734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1183/16000617.0034-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003729580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1183/16000617.0034-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003729580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1183/16000617.0034-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003729580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/136588197242158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003791170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(02)11274-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004483456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(02)11274-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004483456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2013.02.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005083885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/13658810601064009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005666495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.healthplace.2016.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013740512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2012.07.080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014053794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10473289.2006.10464485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019288511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jaci.2004.08.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019596833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2008.05.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023767263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.ede.0000041910.49046.9b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028813310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.ede.0000041910.49046.9b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028813310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jech.2005.044263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030443698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.2010.061135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033070492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.2010.061135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033070492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-014-3893-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035537598", 
              "https://doi.org/10.1007/s11356-014-3893-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036705259", 
              "https://doi.org/10.1038/sj.jea.7500388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036705259", 
              "https://doi.org/10.1038/sj.jea.7500388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsoft.2009.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044488722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsoft.2015.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049946835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jama.287.9.1132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051609574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es1023042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055502054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es1023042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055502054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es103578x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055502487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es103578x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055502487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es301948k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055504857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es505791g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055508850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2011.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061398464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1127/0941-2948/2006/0130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062699594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envres.2017.03.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084746960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsoft.2017.06.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086148637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envint.2017.08.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091489181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envint.2018.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100832710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envint.2018.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100832710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2018.214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107902207", 
              "https://doi.org/10.1038/sdata.2018.214"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-12", 
        "datePublishedReg": "2019-03-12", 
        "description": "Long-term exposure to air pollution is considered a major public health concern and has been related to overall mortality and various diseases such as respiratory and cardiovascular disease. Due to the spatial variability of air pollution concentrations, assessment of individual exposure to air pollution requires spatial datasets at high resolution. Combining detailed air pollution maps with personal mobility and activity patterns allows for an improved exposure assessment. We present high-resolution datasets for the Netherlands providing average ambient air pollution concentration values for the year 2009 for NO2, NOx, PM2.5, PM2.5absorbance and PM10. The raster datasets on 5\u00d75 m grid cover the entire Netherlands and were calculated using the land use regression models originating from the European Study of Cohorts for Air Pollution Effects (ESCAPE) project. Additional datasets with nationwide and regional measurements were used to evaluate the generated concentration maps. The presented datasets allow for spatial aggregations on different scales, nationwide individual exposure assessment, and the integration of activity patterns in the exposure estimation of individuals.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/sdata.2019.35", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050678", 
            "issn": [
              "2052-4463"
            ], 
            "name": "Scientific Data", 
            "type": "Periodical"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "High resolution annual average air pollution concentration maps for the Netherlands", 
        "pagination": "190035", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5e7b530a6556605420dc8026c45f38447e8b7331c7dadff8ede75e86b2d0f4d2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30860500"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101640192"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/sdata.2019.35"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112684203"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/sdata.2019.35", 
          "https://app.dimensions.ai/details/publication/pub.1112684203"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78947_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/sdata201935"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.35'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.35'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.35'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.35'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/sdata.2019.35 schema:about anzsrc-for:11
    2 anzsrc-for:1117
    3 schema:author N7307623c59fb4826965e4f259e3e5726
    4 schema:citation sg:pub.10.1007/s11356-014-3893-5
    5 sg:pub.10.1038/sdata.2018.214
    6 sg:pub.10.1038/sj.jea.7500388
    7 https://doi.org/10.1001/jama.287.9.1132
    8 https://doi.org/10.1016/j.atmosenv.2008.05.057
    9 https://doi.org/10.1016/j.atmosenv.2012.07.080
    10 https://doi.org/10.1016/j.atmosenv.2013.02.037
    11 https://doi.org/10.1016/j.envint.2017.08.017
    12 https://doi.org/10.1016/j.envint.2018.01.009
    13 https://doi.org/10.1016/j.envres.2016.02.039
    14 https://doi.org/10.1016/j.envres.2017.03.050
    15 https://doi.org/10.1016/j.envsoft.2009.10.004
    16 https://doi.org/10.1016/j.envsoft.2015.07.008
    17 https://doi.org/10.1016/j.envsoft.2017.06.029
    18 https://doi.org/10.1016/j.healthplace.2016.10.002
    19 https://doi.org/10.1016/j.jaci.2004.08.030
    20 https://doi.org/10.1016/s0140-6736(02)11274-8
    21 https://doi.org/10.1021/es1023042
    22 https://doi.org/10.1021/es103578x
    23 https://doi.org/10.1021/es301948k
    24 https://doi.org/10.1021/es505791g
    25 https://doi.org/10.1080/10473289.2006.10464485
    26 https://doi.org/10.1080/13658810601064009
    27 https://doi.org/10.1080/136588197242158
    28 https://doi.org/10.1097/01.ede.0000041910.49046.9b
    29 https://doi.org/10.1109/mcse.2011.37
    30 https://doi.org/10.1127/0941-2948/2006/0130
    31 https://doi.org/10.1136/jech.2005.044263
    32 https://doi.org/10.1136/oem.2010.061135
    33 https://doi.org/10.1183/16000617.0034-2016
    34 schema:datePublished 2019-03-12
    35 schema:datePublishedReg 2019-03-12
    36 schema:description Long-term exposure to air pollution is considered a major public health concern and has been related to overall mortality and various diseases such as respiratory and cardiovascular disease. Due to the spatial variability of air pollution concentrations, assessment of individual exposure to air pollution requires spatial datasets at high resolution. Combining detailed air pollution maps with personal mobility and activity patterns allows for an improved exposure assessment. We present high-resolution datasets for the Netherlands providing average ambient air pollution concentration values for the year 2009 for NO<sub>2</sub>, NO<sub>x</sub>, PM<sub>2.5</sub>, PM<sub>2.5absorbance</sub> and PM<sub>10.</sub> The raster datasets on 5×5 m grid cover the entire Netherlands and were calculated using the land use regression models originating from the European Study of Cohorts for Air Pollution Effects (ESCAPE) project. Additional datasets with nationwide and regional measurements were used to evaluate the generated concentration maps. The presented datasets allow for spatial aggregations on different scales, nationwide individual exposure assessment, and the integration of activity patterns in the exposure estimation of individuals.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N73d1165bd3e64e03b56985de8927c9d6
    41 sg:journal.1050678
    42 schema:name High resolution annual average air pollution concentration maps for the Netherlands
    43 schema:pagination 190035
    44 schema:productId N36345134965d4e909004c624c1fc5b54
    45 N421dc16eafa349918c6a595f355fdb88
    46 Nad76c1fda72b4534ab03ce213ad708ec
    47 Nd4e82822ee73450eb8e0bcc7c728aa2e
    48 Nebddd1f9857d44e4af8f4ab59f4edc01
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112684203
    50 https://doi.org/10.1038/sdata.2019.35
    51 schema:sdDatePublished 2019-04-11T13:18
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N6f1fcc23d18a49bcaf210997a1f5d520
    54 schema:url https://www.nature.com/articles/sdata201935
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N164ee4a31e4b4ad69376d994fdb4ea04 rdf:first N2f3944865a1649fb9d8dfe70070cd31a
    59 rdf:rest N59903bdec202492c88e378e84b3f5e3e
    60 N26e7d5811b374b63befc52a69cc01197 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    61 schema:familyName Brunekreef
    62 schema:givenName Bert
    63 rdf:type schema:Person
    64 N2f3944865a1649fb9d8dfe70070cd31a schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    65 schema:familyName Strak
    66 schema:givenName Maciej
    67 rdf:type schema:Person
    68 N36345134965d4e909004c624c1fc5b54 schema:name pubmed_id
    69 schema:value 30860500
    70 rdf:type schema:PropertyValue
    71 N421dc16eafa349918c6a595f355fdb88 schema:name dimensions_id
    72 schema:value pub.1112684203
    73 rdf:type schema:PropertyValue
    74 N49879e4957df44958da67ec9bd20b979 schema:affiliation https://www.grid.ac/institutes/grid.7692.a
    75 schema:familyName Vaartjes
    76 schema:givenName Ilonca
    77 rdf:type schema:Person
    78 N53c00cdbf5b74aa58d36ef0cc79b2b71 schema:affiliation https://www.grid.ac/institutes/grid.7692.a
    79 schema:familyName Grobbee
    80 schema:givenName Diederick E.
    81 rdf:type schema:Person
    82 N59903bdec202492c88e378e84b3f5e3e rdf:first N78dc470a06464cf7b0239313d69e1ded
    83 rdf:rest N99d268e439c24a09832e59aa540ddba8
    84 N6f1fcc23d18a49bcaf210997a1f5d520 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N7307623c59fb4826965e4f259e3e5726 rdf:first N8ae243caf7f04a079bc17f5ab678abfa
    87 rdf:rest N962148e3a7bf496b95d3a8dc6c80aef2
    88 N73d1165bd3e64e03b56985de8927c9d6 schema:volumeNumber 6
    89 rdf:type schema:PublicationVolume
    90 N78dc470a06464cf7b0239313d69e1ded schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    91 schema:familyName Hoek
    92 schema:givenName Gerard
    93 rdf:type schema:Person
    94 N7ed8f02ffa8448759b20ffc53e531ef8 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    95 schema:familyName Dijst
    96 schema:givenName Martin J.
    97 rdf:type schema:Person
    98 N8ae243caf7f04a079bc17f5ab678abfa schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    99 schema:familyName Schmitz
    100 schema:givenName Oliver
    101 rdf:type schema:Person
    102 N8cfc6fac04b547daae583593b1c79142 rdf:first N26e7d5811b374b63befc52a69cc01197
    103 rdf:rest Nb7f46998b98b4491a68a9d53e563f1cf
    104 N8f94730d097546d9bacd9c033f4c66c9 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    105 schema:familyName Karssenberg
    106 schema:givenName Derek
    107 rdf:type schema:Person
    108 N91928d7d055d437fa5b8abe77bd5523e rdf:first N53c00cdbf5b74aa58d36ef0cc79b2b71
    109 rdf:rest Nfa762199ada047f192f45bff14712812
    110 N94677d139dad4733bd024f02364c6e19 rdf:first N7ed8f02ffa8448759b20ffc53e531ef8
    111 rdf:rest N91928d7d055d437fa5b8abe77bd5523e
    112 N962148e3a7bf496b95d3a8dc6c80aef2 rdf:first Ne4288466571f42d188bb443b7cf89f3d
    113 rdf:rest N164ee4a31e4b4ad69376d994fdb4ea04
    114 N99d268e439c24a09832e59aa540ddba8 rdf:first N9d769a0c743843cc843fc63e468fbd0d
    115 rdf:rest N8cfc6fac04b547daae583593b1c79142
    116 N9d769a0c743843cc843fc63e468fbd0d schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    117 schema:familyName Soenario
    118 schema:givenName Ivan
    119 rdf:type schema:Person
    120 Nad76c1fda72b4534ab03ce213ad708ec schema:name doi
    121 schema:value 10.1038/sdata.2019.35
    122 rdf:type schema:PropertyValue
    123 Nb7f46998b98b4491a68a9d53e563f1cf rdf:first N49879e4957df44958da67ec9bd20b979
    124 rdf:rest N94677d139dad4733bd024f02364c6e19
    125 Nd4e82822ee73450eb8e0bcc7c728aa2e schema:name readcube_id
    126 schema:value 5e7b530a6556605420dc8026c45f38447e8b7331c7dadff8ede75e86b2d0f4d2
    127 rdf:type schema:PropertyValue
    128 Ne4288466571f42d188bb443b7cf89f3d schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    129 schema:familyName Beelen
    130 schema:givenName Rob
    131 rdf:type schema:Person
    132 Nebddd1f9857d44e4af8f4ab59f4edc01 schema:name nlm_unique_id
    133 schema:value 101640192
    134 rdf:type schema:PropertyValue
    135 Nfa762199ada047f192f45bff14712812 rdf:first N8f94730d097546d9bacd9c033f4c66c9
    136 rdf:rest rdf:nil
    137 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Medical and Health Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Public Health and Health Services
    142 rdf:type schema:DefinedTerm
    143 sg:journal.1050678 schema:issn 2052-4463
    144 schema:name Scientific Data
    145 rdf:type schema:Periodical
    146 sg:pub.10.1007/s11356-014-3893-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035537598
    147 https://doi.org/10.1007/s11356-014-3893-5
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/sdata.2018.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107902207
    150 https://doi.org/10.1038/sdata.2018.214
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/sj.jea.7500388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036705259
    153 https://doi.org/10.1038/sj.jea.7500388
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1001/jama.287.9.1132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051609574
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.atmosenv.2008.05.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023767263
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.atmosenv.2012.07.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014053794
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.atmosenv.2013.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005083885
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.envint.2017.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091489181
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.envint.2018.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100832710
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.envres.2016.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000962734
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.envres.2017.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084746960
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.envsoft.2009.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044488722
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.envsoft.2015.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049946835
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.envsoft.2017.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086148637
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.healthplace.2016.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013740512
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.jaci.2004.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019596833
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s0140-6736(02)11274-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004483456
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/es1023042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055502054
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/es103578x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055502487
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1021/es301948k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055504857
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1021/es505791g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055508850
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1080/10473289.2006.10464485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019288511
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1080/13658810601064009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005666495
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1080/136588197242158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003791170
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1097/01.ede.0000041910.49046.9b schema:sameAs https://app.dimensions.ai/details/publication/pub.1028813310
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1109/mcse.2011.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398464
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1127/0941-2948/2006/0130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062699594
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1136/jech.2005.044263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443698
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1136/oem.2010.061135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033070492
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1183/16000617.0034-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003729580
    208 rdf:type schema:CreativeWork
    209 https://www.grid.ac/institutes/grid.5477.1 schema:alternateName Utrecht University
    210 schema:name Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
    211 Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
    212 Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands
    213 Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
    214 Luxembourg Institute of Socio-Economic Research (LISER), Esch-sur-Alzette, Luxembourg
    215 National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
    216 rdf:type schema:Organization
    217 https://www.grid.ac/institutes/grid.7692.a schema:alternateName University Medical Center Utrecht
    218 schema:name Global Geo Health Data Center (GGHDC), Utrecht University, Utrecht, The Netherlands
    219 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...