Epigenetic and transcriptional profiling of triple negative breast cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-05

AUTHORS

Andrea A. Perreault, Danielle M. Sprunger, Bryan J. Venters

ABSTRACT

The human HCC1806 cell line is frequently used as a preclinical model for triple negative breast cancer (TNBC). Given that dysregulated epigenetic mechanisms are involved in cancer pathogenesis, emerging therapeutic strategies target chromatin regulators, such as histone deacetylases. A comprehensive understanding of the epigenome and transcription profiling in HCC1806 provides the framework for evaluating efficacy and molecular mechanisms of epigenetic therapies. Thus, to study the interplay of transcription and chromatin in the HCC1806 preclinical model, we performed nascent transcription profiling using Precision Run-On coupled to sequencing (PRO-seq). Additionally, we mapped the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, seven histone modifications, and CTCF using ChIP-exo. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq with near base pair precision mapping of protein-DNA interactions. In this Data Descriptor, we present detailed information on experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the nascent transcription and chromatin. More... »

PAGES

190033

Journal

TITLE

Scientific Data

ISSUE

N/A

VOLUME

6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sdata.2019.33

DOI

http://dx.doi.org/10.1038/sdata.2019.33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112544141

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30835260


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Chemical and Physical Biology Program at Vanderbilt University, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perreault", 
        "givenName": "Andrea A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sprunger", 
        "givenName": "Danielle M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venters", 
        "givenName": "Bryan J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000373198", 
          "https://doi.org/10.1038/nature06929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.10.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002439103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004991127", 
          "https://doi.org/10.1038/nrm3941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.177444.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1229386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008911240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2015.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009263836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010017851", 
          "https://doi.org/10.1038/ng1966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012031985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471250953.bi1112s47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012622622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2010.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012935976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2009.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014398227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019307928", 
          "https://doi.org/10.1038/nbt.1754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0656-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023453879", 
          "https://doi.org/10.1186/s12859-015-0656-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0656-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023453879", 
          "https://doi.org/10.1186/s12859-015-0656-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938796", 
          "https://doi.org/10.1038/nature07829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938796", 
          "https://doi.org/10.1038/nature07829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026652255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2013.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027424538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031867372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031924307", 
          "https://doi.org/10.1038/nmeth.3329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2016.08.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032981779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0149339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036003977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canlet.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037145960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037193541", 
          "https://doi.org/10.1038/ng.3616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci45014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037799511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0215(19981209)78:6<766::aid-ijc15>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038935017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2006.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040586971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2016.07.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042484684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043304663", 
          "https://doi.org/10.1038/nature09906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2015.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043552324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.breast.2015.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044187786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.03.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044799507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1016071107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047051560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cgf.12096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048273012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050061238", 
          "https://doi.org/10.1038/nbt.1662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050171576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2016.2520919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/55016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071426402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/nucl.28067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072306242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083748791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/21541264.2017.1291395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083809640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkx318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084823627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkx318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084823627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085412428", 
          "https://doi.org/10.1038/ng.3867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085412428", 
          "https://doi.org/10.1038/ng.3867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aal2380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090838253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21873/cgp.20041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091487259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bfgp/elx043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092623146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bfgp/elx043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092623146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-018-1432-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103739630", 
          "https://doi.org/10.1186/s13059-018-1432-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-018-1432-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103739630", 
          "https://doi.org/10.1186/s13059-018-1432-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-05", 
    "datePublishedReg": "2019-03-05", 
    "description": "The human HCC1806 cell line is frequently used as a preclinical model for triple negative breast cancer (TNBC). Given that dysregulated epigenetic mechanisms are involved in cancer pathogenesis, emerging therapeutic strategies target chromatin regulators, such as histone deacetylases. A comprehensive understanding of the epigenome and transcription profiling in HCC1806 provides the framework for evaluating efficacy and molecular mechanisms of epigenetic therapies. Thus, to study the interplay of transcription and chromatin in the HCC1806 preclinical model, we performed nascent transcription profiling using Precision Run-On coupled to sequencing (PRO-seq). Additionally, we mapped the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, seven histone modifications, and CTCF using ChIP-exo. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq with near base pair precision mapping of protein-DNA interactions. In this Data Descriptor, we present detailed information on experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the nascent transcription and chromatin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/sdata.2019.33", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Epigenetic and transcriptional profiling of triple negative breast cancer", 
    "pagination": "190033", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d2af11f5ecb988949a9f3bca3389fe12d9e53613307848cb51551ab2f0b1c26e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30835260"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101640192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sdata.2019.33"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112544141"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sdata.2019.33", 
      "https://app.dimensions.ai/details/publication/pub.1112544141"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71701_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/sdata201933"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sdata.2019.33'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sdata.2019.33 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N3f40da02ba224735aa6695f2c3f7266a
4 schema:citation sg:pub.10.1038/nature06929
5 sg:pub.10.1038/nature07829
6 sg:pub.10.1038/nature09906
7 sg:pub.10.1038/nbt.1662
8 sg:pub.10.1038/nbt.1754
9 sg:pub.10.1038/ng.3616
10 sg:pub.10.1038/ng.3867
11 sg:pub.10.1038/ng1966
12 sg:pub.10.1038/nmeth.3329
13 sg:pub.10.1038/nrm3941
14 sg:pub.10.1186/s12859-015-0656-3
15 sg:pub.10.1186/s13059-018-1432-2
16 https://doi.org/10.1002/(sici)1097-0215(19981209)78:6<766::aid-ijc15>3.0.co;2-l
17 https://doi.org/10.1002/0471250953.bi1112s47
18 https://doi.org/10.1016/j.breast.2015.07.009
19 https://doi.org/10.1016/j.canlet.2016.03.001
20 https://doi.org/10.1016/j.ccr.2006.10.008
21 https://doi.org/10.1016/j.cell.2009.06.001
22 https://doi.org/10.1016/j.cell.2011.03.042
23 https://doi.org/10.1016/j.cell.2011.11.013
24 https://doi.org/10.1016/j.cell.2014.10.054
25 https://doi.org/10.1016/j.cell.2015.11.024
26 https://doi.org/10.1016/j.cell.2016.12.013
27 https://doi.org/10.1016/j.celrep.2016.07.032
28 https://doi.org/10.1016/j.molcel.2010.05.004
29 https://doi.org/10.1016/j.molcel.2013.02.015
30 https://doi.org/10.1016/j.molcel.2015.06.023
31 https://doi.org/10.1016/j.molcel.2016.08.034
32 https://doi.org/10.1073/pnas.1016071107
33 https://doi.org/10.1080/21541264.2017.1291395
34 https://doi.org/10.1093/bfgp/elx043
35 https://doi.org/10.1093/bioinformatics/btp352
36 https://doi.org/10.1093/bioinformatics/btp698
37 https://doi.org/10.1093/bioinformatics/btw338
38 https://doi.org/10.1093/nar/gku365
39 https://doi.org/10.1093/nar/gkv825
40 https://doi.org/10.1093/nar/gkx318
41 https://doi.org/10.1101/gad.177444.111
42 https://doi.org/10.1109/tcbb.2016.2520919
43 https://doi.org/10.1111/cgf.12096
44 https://doi.org/10.1126/science.1229386
45 https://doi.org/10.1126/science.aal2380
46 https://doi.org/10.1172/jci45014
47 https://doi.org/10.1371/journal.pone.0149339
48 https://doi.org/10.21873/cgp.20041
49 https://doi.org/10.3791/55016
50 https://doi.org/10.4161/nucl.28067
51 schema:datePublished 2019-03-05
52 schema:datePublishedReg 2019-03-05
53 schema:description The human HCC1806 cell line is frequently used as a preclinical model for triple negative breast cancer (TNBC). Given that dysregulated epigenetic mechanisms are involved in cancer pathogenesis, emerging therapeutic strategies target chromatin regulators, such as histone deacetylases. A comprehensive understanding of the epigenome and transcription profiling in HCC1806 provides the framework for evaluating efficacy and molecular mechanisms of epigenetic therapies. Thus, to study the interplay of transcription and chromatin in the HCC1806 preclinical model, we performed nascent transcription profiling using Precision Run-On coupled to sequencing (PRO-seq). Additionally, we mapped the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, seven histone modifications, and CTCF using ChIP-exo. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq with near base pair precision mapping of protein-DNA interactions. In this Data Descriptor, we present detailed information on experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the nascent transcription and chromatin.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf Nabbf8f70c0cd449fbb394bbd856a7026
58 sg:journal.1050678
59 schema:name Epigenetic and transcriptional profiling of triple negative breast cancer
60 schema:pagination 190033
61 schema:productId N07695cba5ae44dd6a3cb1e0c28375d5e
62 N861f2736f84e473298c5dde7d688c14b
63 Na045f99257d8412298a93cf8b6934c7b
64 Na2b38ac634b6409a9dde34145057bcbc
65 Nc332ac538fb64c1598732f8d4f78cb3d
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112544141
67 https://doi.org/10.1038/sdata.2019.33
68 schema:sdDatePublished 2019-04-11T13:00
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N6c191dffc14247e5bb66bf0aae0a7c8a
71 schema:url https://www.nature.com/articles/sdata201933
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N07695cba5ae44dd6a3cb1e0c28375d5e schema:name readcube_id
76 schema:value d2af11f5ecb988949a9f3bca3389fe12d9e53613307848cb51551ab2f0b1c26e
77 rdf:type schema:PropertyValue
78 N20454dfa45b647c3b0aac1d050bc8f60 rdf:first N3aa808a54e4e43b192abcf4c18bad984
79 rdf:rest Nc8092f919e2e4f24abc30892c635bb84
80 N26d30b190c27477db2d95f5faca5d21d schema:name Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
81 rdf:type schema:Organization
82 N2e52f7336e1e449ea63b65d807aa68d8 schema:affiliation N26d30b190c27477db2d95f5faca5d21d
83 schema:familyName Venters
84 schema:givenName Bryan J.
85 rdf:type schema:Person
86 N3aa808a54e4e43b192abcf4c18bad984 schema:affiliation Ndab697f841c64760a476d53338c64da4
87 schema:familyName Sprunger
88 schema:givenName Danielle M.
89 rdf:type schema:Person
90 N3f40da02ba224735aa6695f2c3f7266a rdf:first Nd0e12283c2fb47fba437662e86b9f5ba
91 rdf:rest N20454dfa45b647c3b0aac1d050bc8f60
92 N6c191dffc14247e5bb66bf0aae0a7c8a schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N861f2736f84e473298c5dde7d688c14b schema:name pubmed_id
95 schema:value 30835260
96 rdf:type schema:PropertyValue
97 Na045f99257d8412298a93cf8b6934c7b schema:name nlm_unique_id
98 schema:value 101640192
99 rdf:type schema:PropertyValue
100 Na2b38ac634b6409a9dde34145057bcbc schema:name doi
101 schema:value 10.1038/sdata.2019.33
102 rdf:type schema:PropertyValue
103 Nabbf8f70c0cd449fbb394bbd856a7026 schema:volumeNumber 6
104 rdf:type schema:PublicationVolume
105 Nc332ac538fb64c1598732f8d4f78cb3d schema:name dimensions_id
106 schema:value pub.1112544141
107 rdf:type schema:PropertyValue
108 Nc8092f919e2e4f24abc30892c635bb84 rdf:first N2e52f7336e1e449ea63b65d807aa68d8
109 rdf:rest rdf:nil
110 Nd0e12283c2fb47fba437662e86b9f5ba schema:affiliation https://www.grid.ac/institutes/grid.152326.1
111 schema:familyName Perreault
112 schema:givenName Andrea A.
113 rdf:type schema:Person
114 Ndab697f841c64760a476d53338c64da4 schema:name Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
115 rdf:type schema:Organization
116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biological Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
120 schema:name Genetics
121 rdf:type schema:DefinedTerm
122 sg:journal.1050678 schema:issn 2052-4463
123 schema:name Scientific Data
124 rdf:type schema:Periodical
125 sg:pub.10.1038/nature06929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000373198
126 https://doi.org/10.1038/nature06929
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nature07829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938796
129 https://doi.org/10.1038/nature07829
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature09906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043304663
132 https://doi.org/10.1038/nature09906
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nbt.1662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061238
135 https://doi.org/10.1038/nbt.1662
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nbt.1754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019307928
138 https://doi.org/10.1038/nbt.1754
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ng.3616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037193541
141 https://doi.org/10.1038/ng.3616
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/ng.3867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085412428
144 https://doi.org/10.1038/ng.3867
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ng1966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010017851
147 https://doi.org/10.1038/ng1966
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nmeth.3329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031924307
150 https://doi.org/10.1038/nmeth.3329
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nrm3941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004991127
153 https://doi.org/10.1038/nrm3941
154 rdf:type schema:CreativeWork
155 sg:pub.10.1186/s12859-015-0656-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023453879
156 https://doi.org/10.1186/s12859-015-0656-3
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/s13059-018-1432-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103739630
159 https://doi.org/10.1186/s13059-018-1432-2
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/(sici)1097-0215(19981209)78:6<766::aid-ijc15>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1038935017
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/0471250953.bi1112s47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012622622
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.breast.2015.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044187786
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.canlet.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037145960
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ccr.2006.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040586971
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.cell.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014398227
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.cell.2011.03.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044799507
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.cell.2011.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026652255
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.cell.2014.10.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002439103
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.cell.2015.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009263836
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.cell.2016.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083748791
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.celrep.2016.07.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042484684
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.molcel.2010.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012935976
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.molcel.2013.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027424538
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.molcel.2015.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043552324
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.molcel.2016.08.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032981779
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1073/pnas.1016071107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047051560
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/21541264.2017.1291395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083809640
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bfgp/elx043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092623146
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/btw338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414785
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/nar/gku365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031867372
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/nar/gkv825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050171576
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/gkx318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084823627
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1101/gad.177444.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006120373
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tcbb.2016.2520919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541580
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/cgf.12096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048273012
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1229386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008911240
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.aal2380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090838253
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1172/jci45014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037799511
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1371/journal.pone.0149339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036003977
224 rdf:type schema:CreativeWork
225 https://doi.org/10.21873/cgp.20041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091487259
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3791/55016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071426402
228 rdf:type schema:CreativeWork
229 https://doi.org/10.4161/nucl.28067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072306242
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.152326.1 schema:alternateName Vanderbilt University
232 schema:name Chemical and Physical Biology Program at Vanderbilt University, Nashville, TN, USA
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...