Columbia Open Health Data, clinical concept prevalence and co-occurrence from electronic health records View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11-27

AUTHORS

Casey N. Ta, Michel Dumontier, George Hripcsak, Nicholas P. Tatonetti, Chunhua Weng

ABSTRACT

Columbia Open Health Data (COHD) is a publicly accessible database of electronic health record (EHR) prevalence and co-occurrence frequencies between conditions, drugs, procedures, and demographics. COHD was derived from Columbia University Irving Medical Center's Observational Health Data Sciences and Informatics (OHDSI) database. The lifetime dataset, derived from all records, contains 36,578 single concepts (11,952 conditions, 12,334 drugs, and 10,816 procedures) and 32,788,901 concept pairs from 5,364,781 patients. The 5-year dataset, derived from records from 2013-2017, contains 29,964 single concepts (10,159 conditions, 10,264 drugs, and 8,270 procedures) and 15,927,195 concept pairs from 1,790,431 patients. Exclusion of rare concepts (count ≤ 10) and Poisson randomization enable data sharing by eliminating risks to patient privacy. EHR prevalences are informative of healthcare consumption rates. Analysis of co-occurrence frequencies via relative frequency analysis and observed-expected frequency ratio are informative of associations between clinical concepts, useful for biomedical research tasks such as drug repurposing and pharmacovigilance. COHD is publicly accessible through a web application-programming interface (API) and downloadable from the Figshare repository. The code is available on GitHub. More... »

PAGES

180273

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sdata.2018.273

DOI

http://dx.doi.org/10.1038/sdata.2018.273

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110222948

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30480666


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patients", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ta", 
        "givenName": "Casey N.", 
        "id": "sg:person.01154317117.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154317117.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maastricht University", 
          "id": "https://www.grid.ac/institutes/grid.5012.6", 
          "name": [
            "Institute of Data Science, Maastricht University, Maastricht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dumontier", 
        "givenName": "Michel", 
        "id": "sg:person.01324655201.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hripcsak", 
        "givenName": "George", 
        "id": "sg:person.01304304572.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304304572.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, NY, USA", 
            "Department of Systems Biology, Columbia University, NY, USA", 
            "Department of Medicine, Columbia University, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatonetti", 
        "givenName": "Nicholas P.", 
        "id": "sg:person.0651210417.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weng", 
        "givenName": "Chunhua", 
        "id": "sg:person.0664551253.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664551253.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3899/jrheum.130675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000153884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2010.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004164891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m3028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004459480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comppsych.2004.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(10)61194-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009037663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aco.0b013e32831b466c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009758811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjqs-2012-001419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010618798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjqs-2012-001419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010618798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4065/75.5.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011308769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-13-251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015253910", 
          "https://doi.org/10.1186/1471-2458-13-251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circoutcomes.112.965798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018744313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circoutcomes.112.965798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018744313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2014.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023548871", 
          "https://doi.org/10.1038/sdata.2014.32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023729999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmed/93.10.669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030786368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2009.000026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035609126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.2005.047803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038785952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2015.292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042311510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3122/jabfm.2013.05.130012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047062895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1532-5415.2008.02150.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051210785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ageing/afl106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-6196(11)64215-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054592200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14034940701195230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058389844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14034940701195230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058389844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jamia/ocv115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059743976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008571-200409000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060290143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008571-200409000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060290143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008571-200409000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060290143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-133-12-200012190-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073704232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074728754", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077256475", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078342617", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078806062", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079131722", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2015.7318907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079205434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100164642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2018.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103235964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2018.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103235964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jamia/ocy124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106546740"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-27", 
    "datePublishedReg": "2018-11-27", 
    "description": "Columbia Open Health Data (COHD) is a publicly accessible database of electronic health record (EHR) prevalence and co-occurrence frequencies between conditions, drugs, procedures, and demographics. COHD was derived from Columbia University Irving Medical Center's Observational Health Data Sciences and Informatics (OHDSI) database. The lifetime dataset, derived from all records, contains 36,578 single concepts (11,952 conditions, 12,334 drugs, and 10,816 procedures) and 32,788,901 concept pairs from 5,364,781 patients. The 5-year dataset, derived from records from 2013-2017, contains 29,964 single concepts (10,159 conditions, 10,264 drugs, and 8,270 procedures) and 15,927,195 concept pairs from 1,790,431 patients. Exclusion of rare concepts (count\u2009\u2264\u200910) and Poisson randomization enable data sharing by eliminating risks to patient privacy. EHR prevalences are informative of healthcare consumption rates. Analysis of co-occurrence frequencies via relative frequency analysis and observed-expected frequency ratio are informative of associations between clinical concepts, useful for biomedical research tasks such as drug repurposing and pharmacovigilance. COHD is publicly accessible through a web application-programming interface (API) and downloadable from the Figshare repository. The code is available on GitHub.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/sdata.2018.273", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2545582", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801821", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2545469", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6443161", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Columbia Open Health Data, clinical concept prevalence and co-occurrence from electronic health records", 
    "pagination": "180273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb57926d8251af4184a6ba4f252433370357ebbc8d81fe7b57fb5eb43cfa3e17"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30480666"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101640192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sdata.2018.273"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110222948"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sdata.2018.273", 
      "https://app.dimensions.ai/details/publication/pub.1110222948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/sdata2018273"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sdata.2018.273'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sdata.2018.273'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sdata.2018.273'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sdata.2018.273'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      66 URIs      25 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sdata.2018.273 schema:about N6fdf5ba41ba54476998549414b46dcac
2 N8a02963b178446e19fb1f410f691a6e5
3 N989dfd4ea03540a5957b8f9cb2fa1a3d
4 N9e1852b929e04baea311d2cdb62c71da
5 Nbe8c6f0f602f40f3a0392986d3e14ce5
6 Nc292786a931e4dd79b602b5e38f7e360
7 anzsrc-for:08
8 anzsrc-for:0806
9 schema:author Na1de87d1c62d4a9881ed3b4d43da9894
10 schema:citation sg:pub.10.1038/sdata.2014.32
11 sg:pub.10.1186/1471-2458-13-251
12 https://app.dimensions.ai/details/publication/pub.1074728754
13 https://app.dimensions.ai/details/publication/pub.1077256475
14 https://app.dimensions.ai/details/publication/pub.1078342617
15 https://app.dimensions.ai/details/publication/pub.1078806062
16 https://app.dimensions.ai/details/publication/pub.1079131722
17 https://doi.org/10.1001/jama.2010.1497
18 https://doi.org/10.1001/jama.2015.292
19 https://doi.org/10.1016/j.comppsych.2004.07.019
20 https://doi.org/10.1016/j.jbi.2018.04.008
21 https://doi.org/10.1016/s0025-6196(11)64215-8
22 https://doi.org/10.1016/s0140-6736(10)61194-4
23 https://doi.org/10.1080/14034940701195230
24 https://doi.org/10.1093/ageing/afl106
25 https://doi.org/10.1093/jamia/ocv115
26 https://doi.org/10.1093/jamia/ocy124
27 https://doi.org/10.1093/qjmed/93.10.669
28 https://doi.org/10.1097/00008571-200409000-00002
29 https://doi.org/10.1097/aco.0b013e32831b466c
30 https://doi.org/10.1109/embc.2015.7318907
31 https://doi.org/10.1111/j.1532-5415.2008.02150.x
32 https://doi.org/10.1136/bmjqs-2012-001419
33 https://doi.org/10.1136/jamia.2009.000026
34 https://doi.org/10.1136/thx.2005.047803
35 https://doi.org/10.1161/circoutcomes.112.965798
36 https://doi.org/10.1197/jamia.m2401
37 https://doi.org/10.1197/jamia.m3028
38 https://doi.org/10.3122/jabfm.2013.05.130012
39 https://doi.org/10.3322/caac.21442
40 https://doi.org/10.3899/jrheum.130675
41 https://doi.org/10.4065/75.5.467
42 https://doi.org/10.7326/0003-4819-133-12-200012190-00014
43 schema:datePublished 2018-11-27
44 schema:datePublishedReg 2018-11-27
45 schema:description Columbia Open Health Data (COHD) is a publicly accessible database of electronic health record (EHR) prevalence and co-occurrence frequencies between conditions, drugs, procedures, and demographics. COHD was derived from Columbia University Irving Medical Center's Observational Health Data Sciences and Informatics (OHDSI) database. The lifetime dataset, derived from all records, contains 36,578 single concepts (11,952 conditions, 12,334 drugs, and 10,816 procedures) and 32,788,901 concept pairs from 5,364,781 patients. The 5-year dataset, derived from records from 2013-2017, contains 29,964 single concepts (10,159 conditions, 10,264 drugs, and 8,270 procedures) and 15,927,195 concept pairs from 1,790,431 patients. Exclusion of rare concepts (count ≤ 10) and Poisson randomization enable data sharing by eliminating risks to patient privacy. EHR prevalences are informative of healthcare consumption rates. Analysis of co-occurrence frequencies via relative frequency analysis and observed-expected frequency ratio are informative of associations between clinical concepts, useful for biomedical research tasks such as drug repurposing and pharmacovigilance. COHD is publicly accessible through a web application-programming interface (API) and downloadable from the Figshare repository. The code is available on GitHub.
46 schema:genre non_research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N3311544733854ad694d66f308888d6d2
50 sg:journal.1050678
51 schema:name Columbia Open Health Data, clinical concept prevalence and co-occurrence from electronic health records
52 schema:pagination 180273
53 schema:productId N03011b9d1f9f44cfb135c7ff5084c728
54 N236740fdab914aab827c7ca2a0df6560
55 Na5e996c0d68243a8a6dcc675ba5740b2
56 Nc0cc4910eecd49709aa04879d9f32261
57 Nec5bc8d31fdb4526913da0763ea52397
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110222948
59 https://doi.org/10.1038/sdata.2018.273
60 schema:sdDatePublished 2019-04-11T13:56
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nd874e44b85274a8a87d7a075d29450f0
63 schema:url https://www.nature.com/articles/sdata2018273
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N03011b9d1f9f44cfb135c7ff5084c728 schema:name pubmed_id
68 schema:value 30480666
69 rdf:type schema:PropertyValue
70 N236740fdab914aab827c7ca2a0df6560 schema:name nlm_unique_id
71 schema:value 101640192
72 rdf:type schema:PropertyValue
73 N2470953190b6480a8a9b17b593fc773f rdf:first sg:person.0651210417.29
74 rdf:rest Nbfea69409fca49369907280102a71ff3
75 N3311544733854ad694d66f308888d6d2 schema:volumeNumber 5
76 rdf:type schema:PublicationVolume
77 N6fdf5ba41ba54476998549414b46dcac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Humans
79 rdf:type schema:DefinedTerm
80 N8a02963b178446e19fb1f410f691a6e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Databases, Factual
82 rdf:type schema:DefinedTerm
83 N989dfd4ea03540a5957b8f9cb2fa1a3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Data Mining
85 rdf:type schema:DefinedTerm
86 N9a0a6d6463dd4096a83f7d1d914120c5 rdf:first sg:person.01304304572.48
87 rdf:rest N2470953190b6480a8a9b17b593fc773f
88 N9e1852b929e04baea311d2cdb62c71da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Electronic Health Records
90 rdf:type schema:DefinedTerm
91 Na1de87d1c62d4a9881ed3b4d43da9894 rdf:first sg:person.01154317117.27
92 rdf:rest Nd8f5fcc5c92b4fcd88b2cc258f1fc8bf
93 Na5e996c0d68243a8a6dcc675ba5740b2 schema:name dimensions_id
94 schema:value pub.1110222948
95 rdf:type schema:PropertyValue
96 Nbe8c6f0f602f40f3a0392986d3e14ce5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Data Analysis
98 rdf:type schema:DefinedTerm
99 Nbfea69409fca49369907280102a71ff3 rdf:first sg:person.0664551253.05
100 rdf:rest rdf:nil
101 Nc0cc4910eecd49709aa04879d9f32261 schema:name doi
102 schema:value 10.1038/sdata.2018.273
103 rdf:type schema:PropertyValue
104 Nc292786a931e4dd79b602b5e38f7e360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Patients
106 rdf:type schema:DefinedTerm
107 Nd874e44b85274a8a87d7a075d29450f0 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nd8f5fcc5c92b4fcd88b2cc258f1fc8bf rdf:first sg:person.01324655201.14
110 rdf:rest N9a0a6d6463dd4096a83f7d1d914120c5
111 Nec5bc8d31fdb4526913da0763ea52397 schema:name readcube_id
112 schema:value bb57926d8251af4184a6ba4f252433370357ebbc8d81fe7b57fb5eb43cfa3e17
113 rdf:type schema:PropertyValue
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information Systems
119 rdf:type schema:DefinedTerm
120 sg:grant.2545469 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2018.273
121 rdf:type schema:MonetaryGrant
122 sg:grant.2545582 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2018.273
123 rdf:type schema:MonetaryGrant
124 sg:grant.3801821 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2018.273
125 rdf:type schema:MonetaryGrant
126 sg:grant.6443161 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2018.273
127 rdf:type schema:MonetaryGrant
128 sg:journal.1050678 schema:issn 2052-4463
129 schema:name Scientific Data
130 rdf:type schema:Periodical
131 sg:person.01154317117.27 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
132 schema:familyName Ta
133 schema:givenName Casey N.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154317117.27
135 rdf:type schema:Person
136 sg:person.01304304572.48 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
137 schema:familyName Hripcsak
138 schema:givenName George
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304304572.48
140 rdf:type schema:Person
141 sg:person.01324655201.14 schema:affiliation https://www.grid.ac/institutes/grid.5012.6
142 schema:familyName Dumontier
143 schema:givenName Michel
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14
145 rdf:type schema:Person
146 sg:person.0651210417.29 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
147 schema:familyName Tatonetti
148 schema:givenName Nicholas P.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29
150 rdf:type schema:Person
151 sg:person.0664551253.05 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
152 schema:familyName Weng
153 schema:givenName Chunhua
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664551253.05
155 rdf:type schema:Person
156 sg:pub.10.1038/sdata.2014.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023548871
157 https://doi.org/10.1038/sdata.2014.32
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1471-2458-13-251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015253910
160 https://doi.org/10.1186/1471-2458-13-251
161 rdf:type schema:CreativeWork
162 https://app.dimensions.ai/details/publication/pub.1074728754 schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1077256475 schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1078342617 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1078806062 schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1079131722 schema:CreativeWork
167 https://doi.org/10.1001/jama.2010.1497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004164891
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1001/jama.2015.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042311510
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.comppsych.2004.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973995
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jbi.2018.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103235964
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0025-6196(11)64215-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054592200
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0140-6736(10)61194-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009037663
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/14034940701195230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058389844
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/ageing/afl106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955551
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/jamia/ocv115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059743976
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/jamia/ocy124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106546740
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/qjmed/93.10.669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030786368
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1097/00008571-200409000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060290143
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/aco.0b013e32831b466c schema:sameAs https://app.dimensions.ai/details/publication/pub.1009758811
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/embc.2015.7318907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079205434
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1532-5415.2008.02150.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051210785
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1136/bmjqs-2012-001419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010618798
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1136/jamia.2009.000026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035609126
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1136/thx.2005.047803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038785952
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1161/circoutcomes.112.965798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018744313
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1197/jamia.m2401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023729999
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1197/jamia.m3028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004459480
208 rdf:type schema:CreativeWork
209 https://doi.org/10.3122/jabfm.2013.05.130012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047062895
210 rdf:type schema:CreativeWork
211 https://doi.org/10.3322/caac.21442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100164642
212 rdf:type schema:CreativeWork
213 https://doi.org/10.3899/jrheum.130675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000153884
214 rdf:type schema:CreativeWork
215 https://doi.org/10.4065/75.5.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011308769
216 rdf:type schema:CreativeWork
217 https://doi.org/10.7326/0003-4819-133-12-200012190-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073704232
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
220 schema:name Department of Biomedical Informatics, Columbia University, NY, USA
221 Department of Medicine, Columbia University, NY, USA
222 Department of Systems Biology, Columbia University, NY, USA
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.5012.6 schema:alternateName Maastricht University
225 schema:name Institute of Data Science, Maastricht University, Maastricht, The Netherlands
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...