The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12-08

AUTHORS

Chris Funk, Pete Peterson, Martin Landsfeld, Diego Pedreros, James Verdin, Shraddhanand Shukla, Gregory Husak, James Rowland, Laura Harrison, Andrew Hoell, Joel Michaelsen

ABSTRACT

The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. More... »

PAGES

150066

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sdata.2015.66

DOI

http://dx.doi.org/10.1038/sdata.2015.66

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007951989

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26646728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA", 
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Funk", 
        "givenName": "Chris", 
        "id": "sg:person.0624662547.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624662547.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peterson", 
        "givenName": "Pete", 
        "id": "sg:person.0644074701.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644074701.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landsfeld", 
        "givenName": "Martin", 
        "id": "sg:person.01167674710.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167674710.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA", 
          "id": "http://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pedreros", 
        "givenName": "Diego", 
        "id": "sg:person.01372112363.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372112363.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA", 
          "id": "http://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verdin", 
        "givenName": "James", 
        "id": "sg:person.014650207213.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014650207213.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shukla", 
        "givenName": "Shraddhanand", 
        "id": "sg:person.011106511537.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011106511537.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Husak", 
        "givenName": "Gregory", 
        "id": "sg:person.07602061363.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602061363.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA", 
          "id": "http://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rowland", 
        "givenName": "James", 
        "id": "sg:person.012427353555.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427353555.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harrison", 
        "givenName": "Laura", 
        "id": "sg:person.0712210101.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712210101.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Oceanic and Atmospheric Administration Earth Systems Research Laboratory, Boulder, Colarodo 80305, USA", 
          "id": "http://www.grid.ac/institutes/grid.3532.7", 
          "name": [
            "National Oceanic and Atmospheric Administration Earth Systems Research Laboratory, Boulder, Colarodo 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoell", 
        "givenName": "Andrew", 
        "id": "sg:person.013705241307.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705241307.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michaelsen", 
        "givenName": "Joel", 
        "id": "sg:person.014115304506.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115304506.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nclimate2067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027365474", 
          "https://doi.org/10.1038/nclimate2067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008895715", 
          "https://doi.org/10.1038/ngeo357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000986589", 
          "https://doi.org/10.1038/ngeo944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1799-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009072912", 
          "https://doi.org/10.1007/s00382-013-1799-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1991-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006994304", 
          "https://doi.org/10.1007/s00382-013-1991-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-013-0860-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029404551", 
          "https://doi.org/10.1007/s00704-013-0860-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2015.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024468388", 
          "https://doi.org/10.1038/sdata.2015.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0984-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046221140", 
          "https://doi.org/10.1007/s00382-010-0984-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1222-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008934330", 
          "https://doi.org/10.1007/s00382-011-1222-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001117993", 
          "https://doi.org/10.1038/nclimate1591"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12-08", 
    "datePublishedReg": "2015-12-08", 
    "description": "The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05\u00b0 climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05\u00b0 CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/sdata.2015.66", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4044940", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3947213", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "precipitation estimates", 
      "Climate Hazards Group InfraRed Precipitation", 
      "Variable Infiltration Capacity (VIC) model", 
      "spatial correlation structure", 
      "hydrologic forecasts", 
      "hydrologic impacts", 
      "gauged locations", 
      "Greater Horn", 
      "environmental records", 
      "station data", 
      "satellite information", 
      "climate hazards", 
      "air temperature", 
      "Southeastern Ethiopia", 
      "precipitation", 
      "stations", 
      "validation results", 
      "high resolution", 
      "interpolation technique", 
      "capacity model", 
      "climatology", 
      "long period", 
      "estimates", 
      "forecasts", 
      "extremes", 
      "correlation structure", 
      "records", 
      "information products", 
      "blending procedure", 
      "hazards", 
      "Africa", 
      "interpolation weights", 
      "location", 
      "resolution", 
      "period", 
      "Ethiopia", 
      "temperature", 
      "chirp", 
      "impact", 
      "data", 
      "Algorithm I", 
      "model", 
      "products", 
      "build", 
      "analysis", 
      "structure", 
      "information", 
      "results", 
      "days", 
      "technique", 
      "approach", 
      "previous approaches", 
      "horn", 
      "final product", 
      "algorithm", 
      "procedure", 
      "weeks", 
      "weight", 
      "observations", 
      "average latency", 
      "latency", 
      "Hazards group Infrared Precipitation", 
      "group Infrared Precipitation", 
      "Infrared Precipitation", 
      "record precipitation estimates", 
      "infrared Cold Cloud Duration (CCD) observations", 
      "Cold Cloud Duration (CCD) observations", 
      "Cloud Duration (CCD) observations", 
      "Duration (CCD) observations", 
      "pentadal", 
      "CCD-based precipitation estimates", 
      "blends station data", 
      "preliminary information product", 
      "novel blending procedure", 
      "CHIRPS algorithm", 
      "regional validation results", 
      "Infiltration Capacity model", 
      "effective hydrologic forecasts", 
      "new environmental record", 
      "monitoring extremes"
    ], 
    "name": "The climate hazards infrared precipitation with stations\u2014a new environmental record for monitoring extremes", 
    "pagination": "150066", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007951989"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sdata.2015.66"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26646728"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sdata.2015.66", 
      "https://app.dimensions.ai/details/publication/pub.1007951989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_653.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/sdata.2015.66"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sdata.2015.66'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sdata.2015.66'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sdata.2015.66'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sdata.2015.66'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      22 PREDICATES      116 URIs      98 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sdata.2015.66 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N6c57d9517f024b0ba557fd9a443b880d
4 schema:citation sg:pub.10.1007/s00382-010-0984-y
5 sg:pub.10.1007/s00382-011-1222-y
6 sg:pub.10.1007/s00382-013-1799-4
7 sg:pub.10.1007/s00382-013-1991-6
8 sg:pub.10.1007/s00704-013-0860-x
9 sg:pub.10.1038/nclimate1591
10 sg:pub.10.1038/nclimate2067
11 sg:pub.10.1038/ngeo357
12 sg:pub.10.1038/ngeo944
13 sg:pub.10.1038/sdata.2015.50
14 schema:datePublished 2015-12-08
15 schema:datePublishedReg 2015-12-08
16 schema:description The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N6812d0671ae3461296d82fb0717e6d06
21 Nb6ff6c3c10b54f6693e6b9f7087d818c
22 sg:journal.1050678
23 schema:keywords Africa
24 Algorithm I
25 CCD-based precipitation estimates
26 CHIRPS algorithm
27 Climate Hazards Group InfraRed Precipitation
28 Cloud Duration (CCD) observations
29 Cold Cloud Duration (CCD) observations
30 Duration (CCD) observations
31 Ethiopia
32 Greater Horn
33 Hazards group Infrared Precipitation
34 Infiltration Capacity model
35 Infrared Precipitation
36 Southeastern Ethiopia
37 Variable Infiltration Capacity (VIC) model
38 air temperature
39 algorithm
40 analysis
41 approach
42 average latency
43 blending procedure
44 blends station data
45 build
46 capacity model
47 chirp
48 climate hazards
49 climatology
50 correlation structure
51 data
52 days
53 effective hydrologic forecasts
54 environmental records
55 estimates
56 extremes
57 final product
58 forecasts
59 gauged locations
60 group Infrared Precipitation
61 hazards
62 high resolution
63 horn
64 hydrologic forecasts
65 hydrologic impacts
66 impact
67 information
68 information products
69 infrared Cold Cloud Duration (CCD) observations
70 interpolation technique
71 interpolation weights
72 latency
73 location
74 long period
75 model
76 monitoring extremes
77 new environmental record
78 novel blending procedure
79 observations
80 pentadal
81 period
82 precipitation
83 precipitation estimates
84 preliminary information product
85 previous approaches
86 procedure
87 products
88 record precipitation estimates
89 records
90 regional validation results
91 resolution
92 results
93 satellite information
94 spatial correlation structure
95 station data
96 stations
97 structure
98 technique
99 temperature
100 validation results
101 weeks
102 weight
103 schema:name The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes
104 schema:pagination 150066
105 schema:productId N0064dc680fd34970b2a57345151f8bdc
106 N2dfe99ec23ed4bd4a607fd7af6808e33
107 N30b24965febf4d86a1c319068927aa44
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007951989
109 https://doi.org/10.1038/sdata.2015.66
110 schema:sdDatePublished 2022-01-01T18:36
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N1f93180823b94355906923c6438963ce
113 schema:url https://doi.org/10.1038/sdata.2015.66
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0064dc680fd34970b2a57345151f8bdc schema:name doi
118 schema:value 10.1038/sdata.2015.66
119 rdf:type schema:PropertyValue
120 N0632a80506a94af4b0c77c4d01753372 rdf:first sg:person.011106511537.28
121 rdf:rest N788e61e649d44389b9f87a04be265115
122 N1f93180823b94355906923c6438963ce schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N2dfe99ec23ed4bd4a607fd7af6808e33 schema:name dimensions_id
125 schema:value pub.1007951989
126 rdf:type schema:PropertyValue
127 N30b24965febf4d86a1c319068927aa44 schema:name pubmed_id
128 schema:value 26646728
129 rdf:type schema:PropertyValue
130 N6812d0671ae3461296d82fb0717e6d06 schema:volumeNumber 2
131 rdf:type schema:PublicationVolume
132 N6c57d9517f024b0ba557fd9a443b880d rdf:first sg:person.0624662547.17
133 rdf:rest Nedef059fd08d4ba1b4047725474795d2
134 N6ea6a7ce58c043feb0814cbcef11daaf rdf:first sg:person.0712210101.16
135 rdf:rest Nedb7b4a846894c4c8c530fc9c799fc6f
136 N72c23d336d9b4cdba6682f070bb90449 rdf:first sg:person.01372112363.78
137 rdf:rest Nde6fc621c9c84443bb19496b82409e0a
138 N788e61e649d44389b9f87a04be265115 rdf:first sg:person.07602061363.38
139 rdf:rest Nac21dc4f0c9348aa8f5b78579ce95cbd
140 Nac21dc4f0c9348aa8f5b78579ce95cbd rdf:first sg:person.012427353555.92
141 rdf:rest N6ea6a7ce58c043feb0814cbcef11daaf
142 Nb6ff6c3c10b54f6693e6b9f7087d818c schema:issueNumber 1
143 rdf:type schema:PublicationIssue
144 Nde6fc621c9c84443bb19496b82409e0a rdf:first sg:person.014650207213.28
145 rdf:rest N0632a80506a94af4b0c77c4d01753372
146 Ne95d109cbda449af9f2294bf544b85ad rdf:first sg:person.014115304506.37
147 rdf:rest rdf:nil
148 Nedb7b4a846894c4c8c530fc9c799fc6f rdf:first sg:person.013705241307.42
149 rdf:rest Ne95d109cbda449af9f2294bf544b85ad
150 Nedef059fd08d4ba1b4047725474795d2 rdf:first sg:person.0644074701.37
151 rdf:rest Nfa46d80ae8de4eeaaacf2085b84e5160
152 Nfa46d80ae8de4eeaaacf2085b84e5160 rdf:first sg:person.01167674710.65
153 rdf:rest N72c23d336d9b4cdba6682f070bb90449
154 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
155 schema:name Earth Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
158 schema:name Atmospheric Sciences
159 rdf:type schema:DefinedTerm
160 sg:grant.3947213 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2015.66
161 rdf:type schema:MonetaryGrant
162 sg:grant.4044940 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2015.66
163 rdf:type schema:MonetaryGrant
164 sg:journal.1050678 schema:issn 2052-4463
165 schema:name Scientific Data
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.011106511537.28 schema:affiliation grid-institutes:grid.133342.4
169 schema:familyName Shukla
170 schema:givenName Shraddhanand
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011106511537.28
172 rdf:type schema:Person
173 sg:person.01167674710.65 schema:affiliation grid-institutes:grid.133342.4
174 schema:familyName Landsfeld
175 schema:givenName Martin
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167674710.65
177 rdf:type schema:Person
178 sg:person.012427353555.92 schema:affiliation grid-institutes:grid.2865.9
179 schema:familyName Rowland
180 schema:givenName James
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427353555.92
182 rdf:type schema:Person
183 sg:person.013705241307.42 schema:affiliation grid-institutes:grid.3532.7
184 schema:familyName Hoell
185 schema:givenName Andrew
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705241307.42
187 rdf:type schema:Person
188 sg:person.01372112363.78 schema:affiliation grid-institutes:grid.2865.9
189 schema:familyName Pedreros
190 schema:givenName Diego
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372112363.78
192 rdf:type schema:Person
193 sg:person.014115304506.37 schema:affiliation grid-institutes:grid.133342.4
194 schema:familyName Michaelsen
195 schema:givenName Joel
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115304506.37
197 rdf:type schema:Person
198 sg:person.014650207213.28 schema:affiliation grid-institutes:grid.2865.9
199 schema:familyName Verdin
200 schema:givenName James
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014650207213.28
202 rdf:type schema:Person
203 sg:person.0624662547.17 schema:affiliation grid-institutes:grid.133342.4
204 schema:familyName Funk
205 schema:givenName Chris
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624662547.17
207 rdf:type schema:Person
208 sg:person.0644074701.37 schema:affiliation grid-institutes:grid.133342.4
209 schema:familyName Peterson
210 schema:givenName Pete
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644074701.37
212 rdf:type schema:Person
213 sg:person.0712210101.16 schema:affiliation grid-institutes:grid.133342.4
214 schema:familyName Harrison
215 schema:givenName Laura
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712210101.16
217 rdf:type schema:Person
218 sg:person.07602061363.38 schema:affiliation grid-institutes:grid.133342.4
219 schema:familyName Husak
220 schema:givenName Gregory
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602061363.38
222 rdf:type schema:Person
223 sg:pub.10.1007/s00382-010-0984-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046221140
224 https://doi.org/10.1007/s00382-010-0984-y
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s00382-011-1222-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008934330
227 https://doi.org/10.1007/s00382-011-1222-y
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s00382-013-1799-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009072912
230 https://doi.org/10.1007/s00382-013-1799-4
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00382-013-1991-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006994304
233 https://doi.org/10.1007/s00382-013-1991-6
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s00704-013-0860-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029404551
236 https://doi.org/10.1007/s00704-013-0860-x
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nclimate1591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001117993
239 https://doi.org/10.1038/nclimate1591
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nclimate2067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027365474
242 https://doi.org/10.1038/nclimate2067
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ngeo357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008895715
245 https://doi.org/10.1038/ngeo357
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/ngeo944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000986589
248 https://doi.org/10.1038/ngeo944
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/sdata.2015.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024468388
251 https://doi.org/10.1038/sdata.2015.50
252 rdf:type schema:CreativeWork
253 grid-institutes:grid.133342.4 schema:alternateName UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA
254 schema:name UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA
255 US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA
256 rdf:type schema:Organization
257 grid-institutes:grid.2865.9 schema:alternateName US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA
258 schema:name US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA
259 rdf:type schema:Organization
260 grid-institutes:grid.3532.7 schema:alternateName National Oceanic and Atmospheric Administration Earth Systems Research Laboratory, Boulder, Colarodo 80305, USA
261 schema:name National Oceanic and Atmospheric Administration Earth Systems Research Laboratory, Boulder, Colarodo 80305, USA
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...