The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12-08

AUTHORS

Chris Funk, Pete Peterson, Martin Landsfeld, Diego Pedreros, James Verdin, Shraddhanand Shukla, Gregory Husak, James Rowland, Laura Harrison, Andrew Hoell, Joel Michaelsen

ABSTRACT

The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. More... »

PAGES

150066

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/sdata.2015.66

DOI

http://dx.doi.org/10.1038/sdata.2015.66

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007951989

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26646728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA", 
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Funk", 
        "givenName": "Chris", 
        "id": "sg:person.0624662547.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624662547.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peterson", 
        "givenName": "Pete", 
        "id": "sg:person.0644074701.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644074701.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landsfeld", 
        "givenName": "Martin", 
        "id": "sg:person.01167674710.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167674710.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA", 
          "id": "http://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pedreros", 
        "givenName": "Diego", 
        "id": "sg:person.01372112363.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372112363.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA", 
          "id": "http://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verdin", 
        "givenName": "James", 
        "id": "sg:person.014650207213.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014650207213.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shukla", 
        "givenName": "Shraddhanand", 
        "id": "sg:person.011106511537.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011106511537.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Husak", 
        "givenName": "Gregory", 
        "id": "sg:person.07602061363.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602061363.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA", 
          "id": "http://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rowland", 
        "givenName": "James", 
        "id": "sg:person.012427353555.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427353555.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harrison", 
        "givenName": "Laura", 
        "id": "sg:person.0712210101.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712210101.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Oceanic and Atmospheric Administration Earth Systems Research Laboratory, Boulder, Colarodo 80305, USA", 
          "id": "http://www.grid.ac/institutes/grid.3532.7", 
          "name": [
            "National Oceanic and Atmospheric Administration Earth Systems Research Laboratory, Boulder, Colarodo 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoell", 
        "givenName": "Andrew", 
        "id": "sg:person.013705241307.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705241307.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michaelsen", 
        "givenName": "Joel", 
        "id": "sg:person.014115304506.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115304506.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nclimate2067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027365474", 
          "https://doi.org/10.1038/nclimate2067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008895715", 
          "https://doi.org/10.1038/ngeo357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000986589", 
          "https://doi.org/10.1038/ngeo944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1799-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009072912", 
          "https://doi.org/10.1007/s00382-013-1799-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1991-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006994304", 
          "https://doi.org/10.1007/s00382-013-1991-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-013-0860-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029404551", 
          "https://doi.org/10.1007/s00704-013-0860-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2015.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024468388", 
          "https://doi.org/10.1038/sdata.2015.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0984-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046221140", 
          "https://doi.org/10.1007/s00382-010-0984-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1222-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008934330", 
          "https://doi.org/10.1007/s00382-011-1222-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001117993", 
          "https://doi.org/10.1038/nclimate1591"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12-08", 
    "datePublishedReg": "2015-12-08", 
    "description": "The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05\u00b0 climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05\u00b0 CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/sdata.2015.66", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4044940", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3947213", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "precipitation estimates", 
      "Climate Hazards Group InfraRed Precipitation", 
      "Variable Infiltration Capacity (VIC) model", 
      "spatial correlation structure", 
      "hydrologic forecasts", 
      "hydrologic impacts", 
      "gauged locations", 
      "Greater Horn", 
      "environmental records", 
      "station data", 
      "satellite information", 
      "climate hazards", 
      "air temperature", 
      "Southeastern Ethiopia", 
      "precipitation", 
      "stations", 
      "validation results", 
      "high resolution", 
      "interpolation technique", 
      "capacity model", 
      "climatology", 
      "long period", 
      "estimates", 
      "forecasts", 
      "extremes", 
      "correlation structure", 
      "records", 
      "information products", 
      "blending procedure", 
      "hazards", 
      "Africa", 
      "interpolation weights", 
      "location", 
      "resolution", 
      "period", 
      "Ethiopia", 
      "temperature", 
      "chirp", 
      "impact", 
      "data", 
      "Algorithm I", 
      "model", 
      "products", 
      "build", 
      "analysis", 
      "structure", 
      "information", 
      "results", 
      "days", 
      "technique", 
      "approach", 
      "previous approaches", 
      "horn", 
      "final product", 
      "algorithm", 
      "procedure", 
      "weeks", 
      "weight", 
      "observations", 
      "average latency", 
      "latency", 
      "Hazards group Infrared Precipitation", 
      "group Infrared Precipitation", 
      "Infrared Precipitation", 
      "record precipitation estimates", 
      "infrared Cold Cloud Duration (CCD) observations", 
      "Cold Cloud Duration (CCD) observations", 
      "Cloud Duration (CCD) observations", 
      "Duration (CCD) observations", 
      "pentadal", 
      "CCD-based precipitation estimates", 
      "blends station data", 
      "preliminary information product", 
      "novel blending procedure", 
      "CHIRPS algorithm", 
      "regional validation results", 
      "Infiltration Capacity model", 
      "effective hydrologic forecasts", 
      "new environmental record", 
      "monitoring extremes"
    ], 
    "name": "The climate hazards infrared precipitation with stations\u2014a new environmental record for monitoring extremes", 
    "pagination": "150066", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007951989"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/sdata.2015.66"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26646728"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/sdata.2015.66", 
      "https://app.dimensions.ai/details/publication/pub.1007951989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_653.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/sdata.2015.66"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/sdata.2015.66'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/sdata.2015.66'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/sdata.2015.66'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/sdata.2015.66'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      22 PREDICATES      116 URIs      98 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/sdata.2015.66 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N69ff1c9d85994d7b97945f9313b96679
4 schema:citation sg:pub.10.1007/s00382-010-0984-y
5 sg:pub.10.1007/s00382-011-1222-y
6 sg:pub.10.1007/s00382-013-1799-4
7 sg:pub.10.1007/s00382-013-1991-6
8 sg:pub.10.1007/s00704-013-0860-x
9 sg:pub.10.1038/nclimate1591
10 sg:pub.10.1038/nclimate2067
11 sg:pub.10.1038/ngeo357
12 sg:pub.10.1038/ngeo944
13 sg:pub.10.1038/sdata.2015.50
14 schema:datePublished 2015-12-08
15 schema:datePublishedReg 2015-12-08
16 schema:description The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N252ecd76a0414e04bbfeac6de888f149
21 Nbdc16d13e5b1426d89c28eeb40dba0b9
22 sg:journal.1050678
23 schema:keywords Africa
24 Algorithm I
25 CCD-based precipitation estimates
26 CHIRPS algorithm
27 Climate Hazards Group InfraRed Precipitation
28 Cloud Duration (CCD) observations
29 Cold Cloud Duration (CCD) observations
30 Duration (CCD) observations
31 Ethiopia
32 Greater Horn
33 Hazards group Infrared Precipitation
34 Infiltration Capacity model
35 Infrared Precipitation
36 Southeastern Ethiopia
37 Variable Infiltration Capacity (VIC) model
38 air temperature
39 algorithm
40 analysis
41 approach
42 average latency
43 blending procedure
44 blends station data
45 build
46 capacity model
47 chirp
48 climate hazards
49 climatology
50 correlation structure
51 data
52 days
53 effective hydrologic forecasts
54 environmental records
55 estimates
56 extremes
57 final product
58 forecasts
59 gauged locations
60 group Infrared Precipitation
61 hazards
62 high resolution
63 horn
64 hydrologic forecasts
65 hydrologic impacts
66 impact
67 information
68 information products
69 infrared Cold Cloud Duration (CCD) observations
70 interpolation technique
71 interpolation weights
72 latency
73 location
74 long period
75 model
76 monitoring extremes
77 new environmental record
78 novel blending procedure
79 observations
80 pentadal
81 period
82 precipitation
83 precipitation estimates
84 preliminary information product
85 previous approaches
86 procedure
87 products
88 record precipitation estimates
89 records
90 regional validation results
91 resolution
92 results
93 satellite information
94 spatial correlation structure
95 station data
96 stations
97 structure
98 technique
99 temperature
100 validation results
101 weeks
102 weight
103 schema:name The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes
104 schema:pagination 150066
105 schema:productId N5fc38318d31a40fba41d2a611c496a21
106 N9834d9a46a4049e8861da769705037e2
107 Na121b81642ff4307a3631160b0c2661e
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007951989
109 https://doi.org/10.1038/sdata.2015.66
110 schema:sdDatePublished 2022-01-01T18:36
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N42c3285fdc8b4c6b93ee096a1ba76181
113 schema:url https://doi.org/10.1038/sdata.2015.66
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N11b48ff6c4564bf198db9d3886810096 rdf:first sg:person.014650207213.28
118 rdf:rest N5e84767a6a104f6bbb803ce32c95beed
119 N20e5aafea83340299536cc1e5ad64f78 rdf:first sg:person.013705241307.42
120 rdf:rest N623094fce9754c3484ea33f2235ea887
121 N252ecd76a0414e04bbfeac6de888f149 schema:volumeNumber 2
122 rdf:type schema:PublicationVolume
123 N2e4cb6c08fb34343a3891a9ae7c628b2 rdf:first sg:person.0644074701.37
124 rdf:rest N6c05e4f235e646e4bc19e19d39bc5c9e
125 N42c3285fdc8b4c6b93ee096a1ba76181 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 N5e84767a6a104f6bbb803ce32c95beed rdf:first sg:person.011106511537.28
128 rdf:rest Ndecdb7002d6247daa7a22de63c27df85
129 N5fc38318d31a40fba41d2a611c496a21 schema:name dimensions_id
130 schema:value pub.1007951989
131 rdf:type schema:PropertyValue
132 N623094fce9754c3484ea33f2235ea887 rdf:first sg:person.014115304506.37
133 rdf:rest rdf:nil
134 N69ff1c9d85994d7b97945f9313b96679 rdf:first sg:person.0624662547.17
135 rdf:rest N2e4cb6c08fb34343a3891a9ae7c628b2
136 N6c05e4f235e646e4bc19e19d39bc5c9e rdf:first sg:person.01167674710.65
137 rdf:rest Ndd9608bc72b14210a17bcd18f715aac3
138 N955f565774264f428676231b8fade77f rdf:first sg:person.0712210101.16
139 rdf:rest N20e5aafea83340299536cc1e5ad64f78
140 N9834d9a46a4049e8861da769705037e2 schema:name pubmed_id
141 schema:value 26646728
142 rdf:type schema:PropertyValue
143 Na121b81642ff4307a3631160b0c2661e schema:name doi
144 schema:value 10.1038/sdata.2015.66
145 rdf:type schema:PropertyValue
146 Nbdc16d13e5b1426d89c28eeb40dba0b9 schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 Ncfcc563a93c04b6c95effe8220e47310 rdf:first sg:person.012427353555.92
149 rdf:rest N955f565774264f428676231b8fade77f
150 Ndd9608bc72b14210a17bcd18f715aac3 rdf:first sg:person.01372112363.78
151 rdf:rest N11b48ff6c4564bf198db9d3886810096
152 Ndecdb7002d6247daa7a22de63c27df85 rdf:first sg:person.07602061363.38
153 rdf:rest Ncfcc563a93c04b6c95effe8220e47310
154 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
155 schema:name Earth Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
158 schema:name Atmospheric Sciences
159 rdf:type schema:DefinedTerm
160 sg:grant.3947213 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2015.66
161 rdf:type schema:MonetaryGrant
162 sg:grant.4044940 http://pending.schema.org/fundedItem sg:pub.10.1038/sdata.2015.66
163 rdf:type schema:MonetaryGrant
164 sg:journal.1050678 schema:issn 2052-4463
165 schema:name Scientific Data
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.011106511537.28 schema:affiliation grid-institutes:grid.133342.4
169 schema:familyName Shukla
170 schema:givenName Shraddhanand
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011106511537.28
172 rdf:type schema:Person
173 sg:person.01167674710.65 schema:affiliation grid-institutes:grid.133342.4
174 schema:familyName Landsfeld
175 schema:givenName Martin
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167674710.65
177 rdf:type schema:Person
178 sg:person.012427353555.92 schema:affiliation grid-institutes:grid.2865.9
179 schema:familyName Rowland
180 schema:givenName James
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427353555.92
182 rdf:type schema:Person
183 sg:person.013705241307.42 schema:affiliation grid-institutes:grid.3532.7
184 schema:familyName Hoell
185 schema:givenName Andrew
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705241307.42
187 rdf:type schema:Person
188 sg:person.01372112363.78 schema:affiliation grid-institutes:grid.2865.9
189 schema:familyName Pedreros
190 schema:givenName Diego
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372112363.78
192 rdf:type schema:Person
193 sg:person.014115304506.37 schema:affiliation grid-institutes:grid.133342.4
194 schema:familyName Michaelsen
195 schema:givenName Joel
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115304506.37
197 rdf:type schema:Person
198 sg:person.014650207213.28 schema:affiliation grid-institutes:grid.2865.9
199 schema:familyName Verdin
200 schema:givenName James
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014650207213.28
202 rdf:type schema:Person
203 sg:person.0624662547.17 schema:affiliation grid-institutes:grid.133342.4
204 schema:familyName Funk
205 schema:givenName Chris
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624662547.17
207 rdf:type schema:Person
208 sg:person.0644074701.37 schema:affiliation grid-institutes:grid.133342.4
209 schema:familyName Peterson
210 schema:givenName Pete
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644074701.37
212 rdf:type schema:Person
213 sg:person.0712210101.16 schema:affiliation grid-institutes:grid.133342.4
214 schema:familyName Harrison
215 schema:givenName Laura
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712210101.16
217 rdf:type schema:Person
218 sg:person.07602061363.38 schema:affiliation grid-institutes:grid.133342.4
219 schema:familyName Husak
220 schema:givenName Gregory
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602061363.38
222 rdf:type schema:Person
223 sg:pub.10.1007/s00382-010-0984-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046221140
224 https://doi.org/10.1007/s00382-010-0984-y
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s00382-011-1222-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008934330
227 https://doi.org/10.1007/s00382-011-1222-y
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s00382-013-1799-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009072912
230 https://doi.org/10.1007/s00382-013-1799-4
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00382-013-1991-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006994304
233 https://doi.org/10.1007/s00382-013-1991-6
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s00704-013-0860-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029404551
236 https://doi.org/10.1007/s00704-013-0860-x
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nclimate1591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001117993
239 https://doi.org/10.1038/nclimate1591
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nclimate2067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027365474
242 https://doi.org/10.1038/nclimate2067
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ngeo357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008895715
245 https://doi.org/10.1038/ngeo357
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/ngeo944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000986589
248 https://doi.org/10.1038/ngeo944
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/sdata.2015.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024468388
251 https://doi.org/10.1038/sdata.2015.50
252 rdf:type schema:CreativeWork
253 grid-institutes:grid.133342.4 schema:alternateName UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA
254 schema:name UC Santa Barbara Climate Hazards Group, Santa Barbara, California 93106, USA
255 US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA
256 rdf:type schema:Organization
257 grid-institutes:grid.2865.9 schema:alternateName US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA
258 schema:name US Geological Survey, Center for Earth Resources Observation and Science, 47914 252nd St., Sioux Falls, South Dakota 57198, USA
259 rdf:type schema:Organization
260 grid-institutes:grid.3532.7 schema:alternateName National Oceanic and Atmospheric Administration Earth Systems Research Laboratory, Boulder, Colarodo 80305, USA
261 schema:name National Oceanic and Atmospheric Administration Earth Systems Research Laboratory, Boulder, Colarodo 80305, USA
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...