Nanotubes for Electronics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-12

AUTHORS

Philip G. Collins, Phaedon Avouris

ABSTRACT

They are stronger than steel, but the most important uses for these threadlike macromolecules may be in faster, more efficient and more durable electronic devices

PAGES

62-69

Journal

TITLE

Scientific American

ISSUE

6

VOLUME

283

Related Patents

  • Vertical Carbon Nanotube Field Effect Transistors And Arrays
  • Fractal Memory And Computational Methods And Systems Based On Nanotechnology
  • Hierarchical Temporal Memory Methods And Systems
  • Method And System For A Hierarchical Temporal Memory Utilizing A Router Hierarchy And Hebbian And Anti-Hebbian Learning
  • Electron Source
  • Temporal Summation Device Utilizing Nanotechnology
  • Field Effect Devices Having A Source Controlled Via A Nanotube Switching Element
  • Field Effect Devices Having A Drain Controlled Via A Nanotube Switching Element
  • Physical Neural Network Liquid State Machine Utilizing Nanotechnology
  • Particle Concentration System
  • Low-K Dielectric Layer Based Upon Carbon Nanostructures
  • Vertical Field Effect Transistors Incorporating Semiconducting Nanotubes Grown In A Spacer-Defined Passage
  • Fractal Memory And Computational Methods And Systems Based On Nanotechnology
  • Vertical Field Effect Transistors Incorporating Semiconducting Nanotubes Grown In A Spacer-Defined Passage
  • Non-Volatile Electromechanical Field Effect Devices And Circuits Using Same And Methods Of Forming Same
  • Photovoltaic Device Containing Carbon Nanotubes And At Least One Organic Hole Conductor
  • Precision Shape Modification Of Nanodevices With A Low-Energy Electron Beam
  • Field Effect Device Having A Channel Of Nanofabric And Methods Of Making Same
  • Method Of Making Non-Volatile Field Effect Devices And Arrays Of Same
  • Selective Synthesis Of Semiconducting Carbon Nanotubes
  • Non-Volatile Electromechanical Field Effect Devices And Circuits Using Same And Methods Of Forming Same
  • Minimally Invasive Cardiovascular Support System With True Haptic Coupling
  • Methods And Structures For Promoting Stable Synthesis Of Carbon Nanotubes
  • Methodology For The Configuration And Repair Of Unreliable Switching Elements
  • Nanotube Socket System And Method
  • Non-Volatile Electromechanical Field Effect Devices And Circuits Using Same And Methods Of Forming Same
  • Nanotechnology Neural Network Methods And Systems
  • Nanotube Semiconductor Structures With Varying Electrical Properties
  • Mechanical Deformation Amount Sensor
  • Non-Volatile Electromechanical Field Effect Devices And Circuits Using Same And Methods Of Forming Same
  • Memristive Neural Processor Utilizing Anti-Hebbian And Hebbian Technology
  • Cardiovascular Haptic Handle System
  • Training Of A Physical Neural Network
  • Plasticity-Induced Self Organizing Nanotechnology For The Extraction Of Independent Components From A Data Stream
  • Horizontal Memory Gain Cells
  • Physical Neural Network Design Incorporating Nanotechnology
  • High Density Synapse Chip Using Nanoparticles
  • Field Effect Devices Having A Gate Controlled Via A Nanotube Switching Element
  • One-Time Programmable, Non-Volatile Field Effect Devices And Methods Of Making Same
  • Utilized Nanotechnology Apparatus Using A Neutral Network, A Solution And A Connection Gap
  • Variable Resistor Apparatus Formed Utilizing Nanotechnology
  • Operating System With Haptic Interface For Minimally Invasive, Hand-Held Surgical Instrument
  • Universal Logic Gate Utilizing Nanotechnology
  • Methods Of Forming Low-K Dielectric Layers Containing Carbon Nanostructures
  • Micro-Fastening System And Method Of Manufacture
  • Pattern Recognition Utilizing A Nanotechnology-Based Neural Network
  • Circuit Arrays Having Cells With Combinations Of Transistors And Nanotube Switching Elements
  • Hierarchical Temporal Memory Utilizing Nanotechnology
  • Multilayer Training In A Physical Neural Network Formed Utilizing Nanotechnology
  • Field Effect Devices Having A Gate Controlled Via A Nanotube Switching Element
  • Hybrid Carbon Nanotude Fet(Cnfet)-Fet Static Ram (Sram) And Method Of Making Same
  • Adaptive Neural Network Utilizing Nanotechnology-Based Components
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/scientificamerican1200-62

    DOI

    http://dx.doi.org/10.1038/scientificamerican1200-62

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046624726

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11103460


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "familyName": "Collins", 
            "givenName": "Philip G.", 
            "type": "Person"
          }, 
          {
            "familyName": "Avouris", 
            "givenName": "Phaedon", 
            "id": "sg:person.012547452644.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012547452644.37"
            ], 
            "type": "Person"
          }
        ], 
        "datePublished": "2000-12", 
        "datePublishedReg": "2000-12-01", 
        "description": "They are stronger than steel, but the most important uses for these threadlike macromolecules may be in faster, more efficient and more durable electronic devices", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/scientificamerican1200-62", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018656", 
            "issn": [
              "0036-8733", 
              "1946-7087"
            ], 
            "name": "Scientific American", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "283"
          }
        ], 
        "name": "Nanotubes for Electronics", 
        "pagination": "62-69", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "de1a1845b8fda960418824324e77ef4dce24abd8d3acbcfd630343ec1e2d5d5d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11103460"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0404400"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/scientificamerican1200-62"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046624726"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/scientificamerican1200-62", 
          "https://app.dimensions.ai/details/publication/pub.1046624726"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/scientificamerican/journal/v283/n6/full/scientificamerican1200-62.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/scientificamerican1200-62'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/scientificamerican1200-62'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/scientificamerican1200-62'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/scientificamerican1200-62'


     

    This table displays all metadata directly associated to this object as RDF triples.

    62 TRIPLES      19 PREDICATES      27 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/scientificamerican1200-62 schema:author Na301f65c4b71492c8c0e471fce2a6208
    2 schema:datePublished 2000-12
    3 schema:datePublishedReg 2000-12-01
    4 schema:description They are stronger than steel, but the most important uses for these threadlike macromolecules may be in faster, more efficient and more durable electronic devices
    5 schema:genre research_article
    6 schema:inLanguage en
    7 schema:isAccessibleForFree false
    8 schema:isPartOf N7d2db755769d4a73afc6b598e619b071
    9 Nbca101de56574041b7434a6658f36331
    10 sg:journal.1018656
    11 schema:name Nanotubes for Electronics
    12 schema:pagination 62-69
    13 schema:productId N23954831f50545a695ddddeec5e1a844
    14 N5479a31eedf44ea09e1648c84b7597fa
    15 Nbcb85d5fc3204b43a9c95896371ab272
    16 Nc5b8aaabaaec4dc28ab58c2b6eae2406
    17 Nc6a15abeb8b64fbe8d1d60bc2bd345ea
    18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046624726
    19 https://doi.org/10.1038/scientificamerican1200-62
    20 schema:sdDatePublished 2019-04-11T00:55
    21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    22 schema:sdPublisher Nc1a84c079e0b4984a62efb98520aa3fc
    23 schema:url http://www.nature.com/scientificamerican/journal/v283/n6/full/scientificamerican1200-62.html
    24 sgo:license sg:explorer/license/
    25 sgo:sdDataset articles
    26 rdf:type schema:ScholarlyArticle
    27 N23954831f50545a695ddddeec5e1a844 schema:name pubmed_id
    28 schema:value 11103460
    29 rdf:type schema:PropertyValue
    30 N2fe6468d3ea94c09b6fea88c5648db8f schema:familyName Collins
    31 schema:givenName Philip G.
    32 rdf:type schema:Person
    33 N5479a31eedf44ea09e1648c84b7597fa schema:name readcube_id
    34 schema:value de1a1845b8fda960418824324e77ef4dce24abd8d3acbcfd630343ec1e2d5d5d
    35 rdf:type schema:PropertyValue
    36 N65aef8a1bb5047caa1560904d8346099 rdf:first sg:person.012547452644.37
    37 rdf:rest rdf:nil
    38 N7d2db755769d4a73afc6b598e619b071 schema:issueNumber 6
    39 rdf:type schema:PublicationIssue
    40 Na301f65c4b71492c8c0e471fce2a6208 rdf:first N2fe6468d3ea94c09b6fea88c5648db8f
    41 rdf:rest N65aef8a1bb5047caa1560904d8346099
    42 Nbca101de56574041b7434a6658f36331 schema:volumeNumber 283
    43 rdf:type schema:PublicationVolume
    44 Nbcb85d5fc3204b43a9c95896371ab272 schema:name doi
    45 schema:value 10.1038/scientificamerican1200-62
    46 rdf:type schema:PropertyValue
    47 Nc1a84c079e0b4984a62efb98520aa3fc schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nc5b8aaabaaec4dc28ab58c2b6eae2406 schema:name nlm_unique_id
    50 schema:value 0404400
    51 rdf:type schema:PropertyValue
    52 Nc6a15abeb8b64fbe8d1d60bc2bd345ea schema:name dimensions_id
    53 schema:value pub.1046624726
    54 rdf:type schema:PropertyValue
    55 sg:journal.1018656 schema:issn 0036-8733
    56 1946-7087
    57 schema:name Scientific American
    58 rdf:type schema:Periodical
    59 sg:person.012547452644.37 schema:familyName Avouris
    60 schema:givenName Phaedon
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012547452644.37
    62 rdf:type schema:Person
     




    Preview window. Press ESC to close (or click here)


    ...