Periodic island-layer-island growth during deposition of ultrastable metallic glasses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-13

AUTHORS

Fan Yang, Chao Wang, Haiyang Bai, Weihua Wang, Yanhui Liu

ABSTRACT

The fast exploration of low energy configuration by surface atoms is believed to favor the formation of ultrastable metallic glasses, prepared by physical vapor deposition. Here, we find that the rearrangement of surface atoms is collective, rather than being dominated by individual atoms. Specifically, we experimentally observe the growth process of ultrastable metallic glasses at monolayer resolution, which follows a periodic island-layer-island pattern with morphology variation between islands and flat surfaces. The estimated surface diffusion coefficient is orders of magnitude higher than that for bulk diffusion. The fast surface dynamics allow the newly deposited clusters on the flat surface to form local islands with spherical shape, which substantially reduces the surface free energy in each island-layer-island growth cycle. Our findings are helpful for understanding the growth mechanisms of ultrastable metallic glasses and potentially for tailoring their properties. More... »

PAGES

75

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s43246-021-00180-9

DOI

http://dx.doi.org/10.1038/s43246-021-00180-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139660004


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Physical Science, University of Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "School of Physical Science, University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Fan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chao", 
        "id": "sg:person.016431231621.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431231621.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, Dongguan, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China", 
            "Songshan Lake Materials Laboratory, Dongguan, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Haiyang", 
        "id": "sg:person.0640310271.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, Dongguan, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China", 
            "Songshan Lake Materials Laboratory, Dongguan, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Weihua", 
        "id": "sg:person.011433524521.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433524521.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, Dongguan, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China", 
            "Songshan Lake Materials Laboratory, Dongguan, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yanhui", 
        "id": "sg:person.013014771543.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014771543.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41467-019-09895-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113811290", 
          "https://doi.org/10.1038/s41467-019-09895-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03656-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103225125", 
          "https://doi.org/10.1038/s41467-018-03656-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014137048", 
          "https://doi.org/10.1038/nmat3521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-019-13054-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122745532", 
          "https://doi.org/10.1038/s41467-019-13054-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046208120", 
          "https://doi.org/10.1038/ncomms13062"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-07-13", 
    "datePublishedReg": "2021-07-13", 
    "description": "The fast exploration of low energy configuration by surface atoms is believed to favor the formation of ultrastable metallic glasses, prepared by physical vapor deposition. Here, we find that the rearrangement of surface atoms is collective, rather than being dominated by individual atoms. Specifically, we experimentally observe the growth process of ultrastable metallic glasses at monolayer resolution, which follows a periodic island-layer-island pattern with morphology variation between islands and flat surfaces. The estimated surface diffusion coefficient is orders of magnitude higher than that for bulk diffusion. The fast surface dynamics allow the newly deposited clusters on the flat surface to form local islands with spherical shape, which substantially reduces the surface free energy in each island-layer-island growth cycle. Our findings are helpful for understanding the growth mechanisms of ultrastable metallic glasses and potentially for tailoring their properties.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s43246-021-00180-9", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9416361", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8133842", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9415481", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1363526", 
        "issn": [
          "2662-4443"
        ], 
        "name": "Communications Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "ultrastable metallic glasses", 
      "metallic glasses", 
      "flat surface", 
      "physical vapor deposition", 
      "surface free energy", 
      "fast surface dynamics", 
      "surface diffusion coefficient", 
      "vapor deposition", 
      "bulk diffusion", 
      "monolayer resolution", 
      "growth mechanism", 
      "island growth", 
      "surface atoms", 
      "spherical shape", 
      "glass", 
      "morphology variation", 
      "orders of magnitude", 
      "growth process", 
      "surface dynamics", 
      "diffusion coefficient", 
      "surface", 
      "deposition", 
      "island patterns", 
      "free energy", 
      "lowest energy configuration", 
      "energy configuration", 
      "local islands", 
      "fast exploration", 
      "diffusion", 
      "configuration", 
      "energy", 
      "properties", 
      "coefficient", 
      "shape", 
      "process", 
      "resolution", 
      "magnitude", 
      "cycle", 
      "order", 
      "individual atoms", 
      "dynamics", 
      "atoms", 
      "formation", 
      "variation", 
      "islands", 
      "mechanism", 
      "growth", 
      "exploration", 
      "growth cycle", 
      "patterns", 
      "clusters", 
      "rearrangement", 
      "findings"
    ], 
    "name": "Periodic island-layer-island growth during deposition of ultrastable metallic glasses", 
    "pagination": "75", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139660004"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s43246-021-00180-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s43246-021-00180-9", 
      "https://app.dimensions.ai/details/publication/pub.1139660004"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_917.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s43246-021-00180-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s43246-021-00180-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s43246-021-00180-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s43246-021-00180-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s43246-021-00180-9'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      82 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s43246-021-00180-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9ff5fc6867cd4ac28631222f3945a1e3
4 schema:citation sg:pub.10.1038/ncomms13062
5 sg:pub.10.1038/nmat3521
6 sg:pub.10.1038/s41467-018-03656-4
7 sg:pub.10.1038/s41467-019-09895-3
8 sg:pub.10.1038/s41467-019-13054-z
9 schema:datePublished 2021-07-13
10 schema:datePublishedReg 2021-07-13
11 schema:description The fast exploration of low energy configuration by surface atoms is believed to favor the formation of ultrastable metallic glasses, prepared by physical vapor deposition. Here, we find that the rearrangement of surface atoms is collective, rather than being dominated by individual atoms. Specifically, we experimentally observe the growth process of ultrastable metallic glasses at monolayer resolution, which follows a periodic island-layer-island pattern with morphology variation between islands and flat surfaces. The estimated surface diffusion coefficient is orders of magnitude higher than that for bulk diffusion. The fast surface dynamics allow the newly deposited clusters on the flat surface to form local islands with spherical shape, which substantially reduces the surface free energy in each island-layer-island growth cycle. Our findings are helpful for understanding the growth mechanisms of ultrastable metallic glasses and potentially for tailoring their properties.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N20c4cee371b94cf394872944bd433d12
15 Nb840547001a84e5fad1eec5a92115b65
16 sg:journal.1363526
17 schema:keywords atoms
18 bulk diffusion
19 clusters
20 coefficient
21 configuration
22 cycle
23 deposition
24 diffusion
25 diffusion coefficient
26 dynamics
27 energy
28 energy configuration
29 exploration
30 fast exploration
31 fast surface dynamics
32 findings
33 flat surface
34 formation
35 free energy
36 glass
37 growth
38 growth cycle
39 growth mechanism
40 growth process
41 individual atoms
42 island growth
43 island patterns
44 islands
45 local islands
46 lowest energy configuration
47 magnitude
48 mechanism
49 metallic glasses
50 monolayer resolution
51 morphology variation
52 order
53 orders of magnitude
54 patterns
55 physical vapor deposition
56 process
57 properties
58 rearrangement
59 resolution
60 shape
61 spherical shape
62 surface
63 surface atoms
64 surface diffusion coefficient
65 surface dynamics
66 surface free energy
67 ultrastable metallic glasses
68 vapor deposition
69 variation
70 schema:name Periodic island-layer-island growth during deposition of ultrastable metallic glasses
71 schema:pagination 75
72 schema:productId N31b6610a57934d689aa3ea695eeb2758
73 N7e27155fb59b4626a51146ab1693bbb6
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139660004
75 https://doi.org/10.1038/s43246-021-00180-9
76 schema:sdDatePublished 2022-10-01T06:49
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N6b1f31d9d3b848a3a6c80feba62eb8f1
79 schema:url https://doi.org/10.1038/s43246-021-00180-9
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N20c4cee371b94cf394872944bd433d12 schema:volumeNumber 2
84 rdf:type schema:PublicationVolume
85 N31b6610a57934d689aa3ea695eeb2758 schema:name doi
86 schema:value 10.1038/s43246-021-00180-9
87 rdf:type schema:PropertyValue
88 N3986f5614bbe498b9320969d32a0d646 rdf:first sg:person.016431231621.30
89 rdf:rest Nbe8c6c08bb5b45baad9afe288bf2dcab
90 N39f83f28e1734f2b895965656b77c7ce rdf:first sg:person.011433524521.36
91 rdf:rest Nf7bc5ae97b12424890c32330f8d13014
92 N6b1f31d9d3b848a3a6c80feba62eb8f1 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N7e27155fb59b4626a51146ab1693bbb6 schema:name dimensions_id
95 schema:value pub.1139660004
96 rdf:type schema:PropertyValue
97 N9ff5fc6867cd4ac28631222f3945a1e3 rdf:first Nb8f736256ab341b1ad5d9b3589f531f7
98 rdf:rest N3986f5614bbe498b9320969d32a0d646
99 Nb840547001a84e5fad1eec5a92115b65 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 Nb8f736256ab341b1ad5d9b3589f531f7 schema:affiliation grid-institutes:grid.410726.6
102 schema:familyName Yang
103 schema:givenName Fan
104 rdf:type schema:Person
105 Nbe8c6c08bb5b45baad9afe288bf2dcab rdf:first sg:person.0640310271.16
106 rdf:rest N39f83f28e1734f2b895965656b77c7ce
107 Nf7bc5ae97b12424890c32330f8d13014 rdf:first sg:person.013014771543.17
108 rdf:rest rdf:nil
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
113 schema:name Materials Engineering
114 rdf:type schema:DefinedTerm
115 sg:grant.8133842 http://pending.schema.org/fundedItem sg:pub.10.1038/s43246-021-00180-9
116 rdf:type schema:MonetaryGrant
117 sg:grant.9415481 http://pending.schema.org/fundedItem sg:pub.10.1038/s43246-021-00180-9
118 rdf:type schema:MonetaryGrant
119 sg:grant.9416361 http://pending.schema.org/fundedItem sg:pub.10.1038/s43246-021-00180-9
120 rdf:type schema:MonetaryGrant
121 sg:journal.1363526 schema:issn 2662-4443
122 schema:name Communications Materials
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.011433524521.36 schema:affiliation grid-institutes:grid.511002.7
126 schema:familyName Wang
127 schema:givenName Weihua
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433524521.36
129 rdf:type schema:Person
130 sg:person.013014771543.17 schema:affiliation grid-institutes:grid.511002.7
131 schema:familyName Liu
132 schema:givenName Yanhui
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014771543.17
134 rdf:type schema:Person
135 sg:person.016431231621.30 schema:affiliation grid-institutes:grid.458438.6
136 schema:familyName Wang
137 schema:givenName Chao
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431231621.30
139 rdf:type schema:Person
140 sg:person.0640310271.16 schema:affiliation grid-institutes:grid.511002.7
141 schema:familyName Bai
142 schema:givenName Haiyang
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16
144 rdf:type schema:Person
145 sg:pub.10.1038/ncomms13062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046208120
146 https://doi.org/10.1038/ncomms13062
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmat3521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014137048
149 https://doi.org/10.1038/nmat3521
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/s41467-018-03656-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103225125
152 https://doi.org/10.1038/s41467-018-03656-4
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/s41467-019-09895-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113811290
155 https://doi.org/10.1038/s41467-019-09895-3
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/s41467-019-13054-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1122745532
158 https://doi.org/10.1038/s41467-019-13054-z
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.410726.6 schema:alternateName School of Physical Science, University of Chinese Academy of Sciences, Beijing, China
161 schema:name Institute of Physics, Chinese Academy of Sciences, Beijing, China
162 School of Physical Science, University of Chinese Academy of Sciences, Beijing, China
163 rdf:type schema:Organization
164 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, Beijing, China
165 schema:name Institute of Physics, Chinese Academy of Sciences, Beijing, China
166 rdf:type schema:Organization
167 grid-institutes:grid.511002.7 schema:alternateName Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
168 schema:name Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
169 Institute of Physics, Chinese Academy of Sciences, Beijing, China
170 Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...