Enhancing ductility in bulk metallic glasses by straining during cooling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-26

AUTHORS

Rodrigo Miguel Ojeda Mota, Ethen Thomas Lund, Sungwoo Sohn, David John Browne, Douglas Clayton Hofmann, Stefano Curtarolo, Axel van de Walle, Jan Schroers

ABSTRACT

Most of the known bulk metallic glasses lack sufficient ductility or toughness when fabricated under conditions resulting in bulk glass formation. To address this major shortcoming, processing techniques to improve ductility that mechanically affect the glass have been developed, however it remains unclear for which metallic glass formers they work and by how much. Instead of manipulating the glass state, we show here that an applied strain rate can excite the liquid, and simultaneous cooling results in freezing of the excited liquid into a glass with a higher fictive temperature. Microscopically, straining causes the structure to dilate, hence “pulls” the structure energetically up the potential energy landscape. Upon further cooling, the resulting excited liquid freezes into an excited glass that exhibits enhanced ductility. We use Zr44Ti11Cu10Ni10Be25 as an example alloy to pull bulk metallic glasses through this excited liquid cooling method, which can lead to tripling of the bending ductility. More... »

PAGES

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s43246-021-00127-0

DOI

http://dx.doi.org/10.1038/s43246-021-00127-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135741019


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mota", 
        "givenName": "Rodrigo Miguel Ojeda", 
        "id": "sg:person.07432636061.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07432636061.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lund", 
        "givenName": "Ethen Thomas", 
        "id": "sg:person.016504726257.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504726257.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "Sungwoo", 
        "id": "sg:person.01167274630.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Browne", 
        "givenName": "David John", 
        "id": "sg:person.011016327161.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016327161.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofmann", 
        "givenName": "Douglas Clayton", 
        "id": "sg:person.01270405367.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270405367.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Curtarolo", 
        "givenName": "Stefano", 
        "id": "sg:person.014320332223.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014320332223.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Engineering, Brown University, Providence, RI, USA", 
          "id": "http://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "School of Engineering, Brown University, Providence, RI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van de Walle", 
        "givenName": "Axel", 
        "id": "sg:person.010772077773.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010772077773.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41427-020-0233-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129740068", 
          "https://doi.org/10.1038/s41427-020-0233-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014001816", 
          "https://doi.org/10.1038/nature14674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2008.0066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000281218", 
          "https://doi.org/10.1557/jmr.2008.0066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-2016-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125108104", 
          "https://doi.org/10.1038/s41586-020-2016-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-018-5062-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111041392", 
          "https://doi.org/10.1007/s11661-018-5062-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-05682-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106100323", 
          "https://doi.org/10.1038/s41467-018-05682-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2016.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036230859", 
          "https://doi.org/10.1038/natrevmats.2016.39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2007.0410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021799448", 
          "https://doi.org/10.1557/jmr.2007.0410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020287223", 
          "https://doi.org/10.1038/ncomms6083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-02943-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100795974", 
          "https://doi.org/10.1038/s41467-018-02943-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016487349", 
          "https://doi.org/10.1038/srep10545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006395896", 
          "https://doi.org/10.1038/nmat1552"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-26", 
    "datePublishedReg": "2021-02-26", 
    "description": "Most of the known bulk metallic glasses lack sufficient ductility or toughness when fabricated under conditions resulting in bulk glass formation. To address this major shortcoming, processing techniques to improve ductility that mechanically affect the glass have been developed, however it remains unclear for which metallic glass formers they work and by how much. Instead of manipulating the glass state, we show here that an applied strain rate can excite the liquid, and simultaneous cooling results in freezing of the excited liquid into a glass with a higher fictive temperature. Microscopically, straining causes the structure to dilate, hence \u201cpulls\u201d the structure energetically up the potential energy landscape. Upon further cooling, the resulting excited liquid freezes into an excited glass that exhibits enhanced ductility. We use Zr44Ti11Cu10Ni10Be25 as an example alloy to pull bulk metallic glasses through this excited liquid cooling method, which can lead to tripling of the bending ductility.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s43246-021-00127-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1363526", 
        "issn": [
          "2662-4443"
        ], 
        "name": "Communications Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "bulk metallic glass", 
      "metallic glasses", 
      "liquid cooling method", 
      "bulk glass formation", 
      "sufficient ductility", 
      "ductility", 
      "strain rate", 
      "cooling method", 
      "metallic glass formers", 
      "cooling results", 
      "liquid freezes", 
      "glass formation", 
      "glass", 
      "fictive temperature", 
      "excited liquid", 
      "further cooling", 
      "liquid", 
      "toughness", 
      "Zr44Ti11Cu10Ni10Be25", 
      "glass state", 
      "alloy", 
      "glass formers", 
      "cooling", 
      "temperature", 
      "major shortcomings", 
      "structure", 
      "freeze", 
      "potential energy landscape", 
      "technique", 
      "conditions", 
      "method", 
      "freezing", 
      "energy landscape", 
      "formation", 
      "results", 
      "shortcomings", 
      "formers", 
      "rate", 
      "state", 
      "landscape"
    ], 
    "name": "Enhancing ductility in bulk metallic glasses by straining during cooling", 
    "pagination": "23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135741019"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s43246-021-00127-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s43246-021-00127-0", 
      "https://app.dimensions.ai/details/publication/pub.1135741019"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_912.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s43246-021-00127-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s43246-021-00127-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s43246-021-00127-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s43246-021-00127-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s43246-021-00127-0'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      76 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s43246-021-00127-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc31617c55f674fd2b700634d2cb61e26
4 schema:citation sg:pub.10.1007/s11661-018-5062-9
5 sg:pub.10.1038/natrevmats.2016.39
6 sg:pub.10.1038/nature14674
7 sg:pub.10.1038/ncomms6083
8 sg:pub.10.1038/nmat1552
9 sg:pub.10.1038/s41427-020-0233-8
10 sg:pub.10.1038/s41467-018-02943-4
11 sg:pub.10.1038/s41467-018-05682-8
12 sg:pub.10.1038/s41586-020-2016-3
13 sg:pub.10.1038/srep10545
14 sg:pub.10.1557/jmr.2007.0410
15 sg:pub.10.1557/jmr.2008.0066
16 schema:datePublished 2021-02-26
17 schema:datePublishedReg 2021-02-26
18 schema:description Most of the known bulk metallic glasses lack sufficient ductility or toughness when fabricated under conditions resulting in bulk glass formation. To address this major shortcoming, processing techniques to improve ductility that mechanically affect the glass have been developed, however it remains unclear for which metallic glass formers they work and by how much. Instead of manipulating the glass state, we show here that an applied strain rate can excite the liquid, and simultaneous cooling results in freezing of the excited liquid into a glass with a higher fictive temperature. Microscopically, straining causes the structure to dilate, hence “pulls” the structure energetically up the potential energy landscape. Upon further cooling, the resulting excited liquid freezes into an excited glass that exhibits enhanced ductility. We use Zr44Ti11Cu10Ni10Be25 as an example alloy to pull bulk metallic glasses through this excited liquid cooling method, which can lead to tripling of the bending ductility.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf Neea8b4fa0f76493aa2d9a358755ad86b
22 Nf7df32caac1d48e99d8abb8a515883c5
23 sg:journal.1363526
24 schema:keywords Zr44Ti11Cu10Ni10Be25
25 alloy
26 bulk glass formation
27 bulk metallic glass
28 conditions
29 cooling
30 cooling method
31 cooling results
32 ductility
33 energy landscape
34 excited liquid
35 fictive temperature
36 formation
37 formers
38 freeze
39 freezing
40 further cooling
41 glass
42 glass formation
43 glass formers
44 glass state
45 landscape
46 liquid
47 liquid cooling method
48 liquid freezes
49 major shortcomings
50 metallic glass formers
51 metallic glasses
52 method
53 potential energy landscape
54 rate
55 results
56 shortcomings
57 state
58 strain rate
59 structure
60 sufficient ductility
61 technique
62 temperature
63 toughness
64 schema:name Enhancing ductility in bulk metallic glasses by straining during cooling
65 schema:pagination 23
66 schema:productId N0cb0be6a91394113b4d4ddcf4cd3565b
67 N214a6029f50e4546bcc191c9a895a36e
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135741019
69 https://doi.org/10.1038/s43246-021-00127-0
70 schema:sdDatePublished 2022-10-01T06:49
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N8eeac64dd2b8487685fc321ce8237018
73 schema:url https://doi.org/10.1038/s43246-021-00127-0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0cb0be6a91394113b4d4ddcf4cd3565b schema:name doi
78 schema:value 10.1038/s43246-021-00127-0
79 rdf:type schema:PropertyValue
80 N11f6f5bba7d6421b8a9abe7a9f598d8c rdf:first sg:person.01145527322.19
81 rdf:rest rdf:nil
82 N214a6029f50e4546bcc191c9a895a36e schema:name dimensions_id
83 schema:value pub.1135741019
84 rdf:type schema:PropertyValue
85 N253ce4d92d7843eaa683bb04834deb32 rdf:first sg:person.01270405367.37
86 rdf:rest N89981866cdad431e9f44cd61b766b6e4
87 N89981866cdad431e9f44cd61b766b6e4 rdf:first sg:person.014320332223.10
88 rdf:rest Nb03a49c465fb462194a3945fb686b375
89 N8eeac64dd2b8487685fc321ce8237018 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nb03a49c465fb462194a3945fb686b375 rdf:first sg:person.010772077773.31
92 rdf:rest N11f6f5bba7d6421b8a9abe7a9f598d8c
93 Nc09772a9a161493f8d37838c81f8a31e rdf:first sg:person.011016327161.09
94 rdf:rest N253ce4d92d7843eaa683bb04834deb32
95 Nc31617c55f674fd2b700634d2cb61e26 rdf:first sg:person.07432636061.20
96 rdf:rest Ne9231338986d4e1b94aa846fc90ef088
97 Nd22937a08aa24eddbdc7b0be541cd496 rdf:first sg:person.01167274630.47
98 rdf:rest Nc09772a9a161493f8d37838c81f8a31e
99 Ne9231338986d4e1b94aa846fc90ef088 rdf:first sg:person.016504726257.01
100 rdf:rest Nd22937a08aa24eddbdc7b0be541cd496
101 Neea8b4fa0f76493aa2d9a358755ad86b schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 Nf7df32caac1d48e99d8abb8a515883c5 schema:volumeNumber 2
104 rdf:type schema:PublicationVolume
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
109 schema:name Materials Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1363526 schema:issn 2662-4443
112 schema:name Communications Materials
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.010772077773.31 schema:affiliation grid-institutes:grid.40263.33
116 schema:familyName van de Walle
117 schema:givenName Axel
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010772077773.31
119 rdf:type schema:Person
120 sg:person.011016327161.09 schema:affiliation grid-institutes:grid.7886.1
121 schema:familyName Browne
122 schema:givenName David John
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016327161.09
124 rdf:type schema:Person
125 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
126 schema:familyName Schroers
127 schema:givenName Jan
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
129 rdf:type schema:Person
130 sg:person.01167274630.47 schema:affiliation grid-institutes:grid.47100.32
131 schema:familyName Sohn
132 schema:givenName Sungwoo
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47
134 rdf:type schema:Person
135 sg:person.01270405367.37 schema:affiliation grid-institutes:grid.20861.3d
136 schema:familyName Hofmann
137 schema:givenName Douglas Clayton
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270405367.37
139 rdf:type schema:Person
140 sg:person.014320332223.10 schema:affiliation grid-institutes:grid.26009.3d
141 schema:familyName Curtarolo
142 schema:givenName Stefano
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014320332223.10
144 rdf:type schema:Person
145 sg:person.016504726257.01 schema:affiliation grid-institutes:grid.47100.32
146 schema:familyName Lund
147 schema:givenName Ethen Thomas
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504726257.01
149 rdf:type schema:Person
150 sg:person.07432636061.20 schema:affiliation grid-institutes:grid.47100.32
151 schema:familyName Mota
152 schema:givenName Rodrigo Miguel Ojeda
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07432636061.20
154 rdf:type schema:Person
155 sg:pub.10.1007/s11661-018-5062-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111041392
156 https://doi.org/10.1007/s11661-018-5062-9
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/natrevmats.2016.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036230859
159 https://doi.org/10.1038/natrevmats.2016.39
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature14674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014001816
162 https://doi.org/10.1038/nature14674
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ncomms6083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020287223
165 https://doi.org/10.1038/ncomms6083
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmat1552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006395896
168 https://doi.org/10.1038/nmat1552
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/s41427-020-0233-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129740068
171 https://doi.org/10.1038/s41427-020-0233-8
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/s41467-018-02943-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100795974
174 https://doi.org/10.1038/s41467-018-02943-4
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/s41467-018-05682-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106100323
177 https://doi.org/10.1038/s41467-018-05682-8
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/s41586-020-2016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125108104
180 https://doi.org/10.1038/s41586-020-2016-3
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/srep10545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016487349
183 https://doi.org/10.1038/srep10545
184 rdf:type schema:CreativeWork
185 sg:pub.10.1557/jmr.2007.0410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021799448
186 https://doi.org/10.1557/jmr.2007.0410
187 rdf:type schema:CreativeWork
188 sg:pub.10.1557/jmr.2008.0066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000281218
189 https://doi.org/10.1557/jmr.2008.0066
190 rdf:type schema:CreativeWork
191 grid-institutes:grid.20861.3d schema:alternateName Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, USA
192 schema:name Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, USA
193 rdf:type schema:Organization
194 grid-institutes:grid.26009.3d schema:alternateName Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham, NC, USA
195 schema:name Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham, NC, USA
196 rdf:type schema:Organization
197 grid-institutes:grid.40263.33 schema:alternateName School of Engineering, Brown University, Providence, RI, USA
198 schema:name School of Engineering, Brown University, Providence, RI, USA
199 rdf:type schema:Organization
200 grid-institutes:grid.47100.32 schema:alternateName Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
201 schema:name Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
202 rdf:type schema:Organization
203 grid-institutes:grid.7886.1 schema:alternateName School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
204 schema:name School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...