More accurate specification of water supply shows its importance for global crop production View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-01

AUTHORS

Jonathan Proctor, Angela Rigden, Duo Chan, Peter Huybers

ABSTRACT

Warming temperatures tend to damage crop yields, yet the influence of water supply on global yields and its relation to temperature stress remains unclear. Here we use satellite-based measurements to provide empirical estimates of how root zone soil moisture and surface air temperature jointly influence the global productivity of maize, soybeans, millet and sorghum. Relative to empirical models using precipitation as a proxy for water supply, we find that models using soil moisture explain 30–120% more of the interannual yield variation across crops. Models using soil moisture also better separate water-supply stress from correlated heat stress and show that soil moisture and temperature contribute roughly equally to historical variations in yield. Globally, our models project yield damages of −9% to −32% across crops by end-of-century under Shared Socioeconomic Pathway 5-8.5 from changes in temperature and soil moisture. By contrast, projections using temperature and precipitation overestimate damages by 28% to 320% across crops both because they confound stresses from dryness and heat and because changes in soil moisture and temperature diverge from their historical association due to climate change. Our results demonstrate the importance of accurately representing water supply for predicting changes in global agricultural productivity and for designing effective adaptation strategies. More... »

PAGES

753-763

References to SciGraph publications

  • 2021-04-01. Anthropogenic climate change has slowed global agricultural productivity growth in NATURE CLIMATE CHANGE
  • 2018-08-08. Estimating global agricultural effects of geoengineering using volcanic eruptions in NATURE
  • 2019-11-05. Frequency of extreme precipitation increases extensively with event rareness under global warming in SCIENTIFIC REPORTS
  • 2020-08-10. Net benefits to US soy and maize yields from intensifying hourly rainfall in NATURE CLIMATE CHANGE
  • 2020-01-07. U1 snRNP regulates cancer cell migration and invasion in vitro in NATURE COMMUNICATIONS
  • 2017-01-19. Consistent negative response of US crops to high temperatures in observations and crop models in NATURE COMMUNICATIONS
  • 2020-02-18. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields in NATURE FOOD
  • 2016-07-05. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD in SCIENTIFIC DATA
  • 2009. The Elements of Statistical Learning, Data Mining, Inference, and Prediction in NONE
  • 2015-01-22. Climate variation explains a third of global crop yield variability in NATURE COMMUNICATIONS
  • 2020-09-15. Impacts of rising temperatures and farm management practices on global yields of 18 crops in NATURE FOOD
  • 2019-11-04. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture in CLIMATIC CHANGE
  • 2018-06-27. Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns in IRRIGATION SCIENCE
  • 2015-10-12. Cooling of US Midwest summer temperature extremes from cropland intensification in NATURE CLIMATE CHANGE
  • 2013-03-03. The critical role of extreme heat for maize production in the United States in NATURE CLIMATE CHANGE
  • 2021-11-01. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models in NATURE FOOD
  • 2021-09-20. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields in NATURE FOOD
  • 2016-09-05. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes in NATURE CLIMATE CHANGE
  • 2021-03-19. Atmospheric opacity has a nonlinear effect on global crop yields in NATURE FOOD
  • 2020-09-29. Soil moisture dominates dryness stress on ecosystem production globally in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s43016-022-00592-x

    DOI

    http://dx.doi.org/10.1038/s43016-022-00592-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1151122548


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for the Environment and Data Science Initiative, Harvard University, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Center for the Environment and Data Science Initiative, Harvard University, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Proctor", 
            "givenName": "Jonathan", 
            "id": "sg:person.011343630141.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011343630141.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth System Science, University of California Irvine, Irvine, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA", 
                "Department of Earth System Science, University of California Irvine, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rigden", 
            "givenName": "Angela", 
            "id": "sg:person.01324066707.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324066707.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.56466.37", 
              "name": [
                "Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chan", 
            "givenName": "Duo", 
            "id": "sg:person.0662112377.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662112377.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huybers", 
            "givenName": "Peter", 
            "id": "sg:person.01016572724.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016572724.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41586-018-0417-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106055720", 
              "https://doi.org/10.1038/s41586-018-0417-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-18631-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131257031", 
              "https://doi.org/10.1038/s41467-020-18631-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00271-018-0580-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105173979", 
              "https://doi.org/10.1007/s00271-018-0580-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041542738", 
              "https://doi.org/10.1038/nclimate3114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s43016-020-00148-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130833932", 
              "https://doi.org/10.1038/s43016-020-00148-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-021-01000-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136848490", 
              "https://doi.org/10.1038/s41558-021-01000-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-84858-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032573094", 
              "https://doi.org/10.1007/978-0-387-84858-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-52277-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122304683", 
              "https://doi.org/10.1038/s41598-019-52277-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006730135", 
              "https://doi.org/10.1038/sdata.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s43016-020-0028-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124938109", 
              "https://doi.org/10.1038/s43016-020-0028-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s43016-021-00400-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1142312971", 
              "https://doi.org/10.1038/s43016-021-00400-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010392333", 
              "https://doi.org/10.1038/ncomms6989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-13993-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123915232", 
              "https://doi.org/10.1038/s41467-019-13993-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011317676", 
              "https://doi.org/10.1038/nclimate1832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s43016-021-00240-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136508961", 
              "https://doi.org/10.1038/s43016-021-00240-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s43016-021-00341-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141235137", 
              "https://doi.org/10.1038/s43016-021-00341-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-019-02555-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122301493", 
              "https://doi.org/10.1007/s10584-019-02555-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-020-0830-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130005911", 
              "https://doi.org/10.1038/s41558-020-0830-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030248798", 
              "https://doi.org/10.1038/ncomms13931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050757368", 
              "https://doi.org/10.1038/nclimate2825"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-09-01", 
        "datePublishedReg": "2022-09-01", 
        "description": "Warming temperatures tend to damage crop yields, yet the influence of water supply on global yields and its relation to temperature stress remains unclear. Here we use satellite-based measurements to provide empirical estimates of how root zone soil moisture and surface air temperature jointly influence the global productivity of maize, soybeans, millet and sorghum. Relative to empirical models using precipitation as a proxy for water supply, we find that models using soil moisture explain 30\u2013120% more of the interannual yield variation across crops. Models using soil moisture also better separate water-supply stress from correlated heat stress and show that soil moisture and temperature contribute roughly equally to historical variations in yield. Globally, our models project yield damages of \u22129% to \u221232% across crops by end-of-century under Shared Socioeconomic Pathway 5-8.5 from changes in temperature and soil moisture. By contrast, projections using temperature and precipitation overestimate damages by 28% to 320% across crops both because they confound stresses from dryness and heat and because changes in soil moisture and temperature diverge from their historical association due to climate change. Our results demonstrate the importance of accurately representing water supply for predicting changes in global agricultural productivity and for designing effective adaptation strategies.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s43016-022-00592-x", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1363506", 
            "issn": [
              "2662-1355"
            ], 
            "name": "Nature Food", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "soil moisture", 
          "water supply", 
          "root zone soil moisture", 
          "socioeconomic pathway 5", 
          "zone soil moisture", 
          "surface air temperature", 
          "satellite-based measurements", 
          "water supply stress", 
          "effective adaptation strategies", 
          "historical variation", 
          "interannual yield variation", 
          "climate change", 
          "global crop production", 
          "air temperature", 
          "global agricultural productivity", 
          "pathway 5", 
          "adaptation strategies", 
          "moisture", 
          "accurate specification", 
          "global productivity", 
          "crop yield", 
          "crop production", 
          "yield variation", 
          "yield damage", 
          "precipitation", 
          "agricultural productivity", 
          "crops", 
          "temperature stress", 
          "heat stress", 
          "global yield", 
          "empirical model", 
          "yield", 
          "productivity", 
          "supply", 
          "empirical estimates", 
          "variation", 
          "proxy", 
          "temperature", 
          "changes", 
          "sorghum", 
          "millet", 
          "maize", 
          "soybean", 
          "stress", 
          "estimates", 
          "projections", 
          "model", 
          "dryness", 
          "production", 
          "century", 
          "heat", 
          "measurements", 
          "importance", 
          "damage", 
          "influence", 
          "contrast", 
          "historical association", 
          "diverges", 
          "end", 
          "strategies", 
          "relation", 
          "results", 
          "association", 
          "temperature diverges", 
          "specification"
        ], 
        "name": "More accurate specification of water supply shows its importance for global crop production", 
        "pagination": "753-763", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1151122548"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s43016-022-00592-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s43016-022-00592-x", 
          "https://app.dimensions.ai/details/publication/pub.1151122548"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_919.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s43016-022-00592-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s43016-022-00592-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s43016-022-00592-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s43016-022-00592-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s43016-022-00592-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      113 URIs      81 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s43016-022-00592-x schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 anzsrc-for:05
    4 anzsrc-for:0503
    5 anzsrc-for:06
    6 anzsrc-for:0607
    7 schema:author Na6b3c9cf7ea342f69a55e5238a1b30c0
    8 schema:citation sg:pub.10.1007/978-0-387-84858-7
    9 sg:pub.10.1007/s00271-018-0580-1
    10 sg:pub.10.1007/s10584-019-02555-x
    11 sg:pub.10.1038/nclimate1832
    12 sg:pub.10.1038/nclimate2825
    13 sg:pub.10.1038/nclimate3114
    14 sg:pub.10.1038/ncomms13931
    15 sg:pub.10.1038/ncomms6989
    16 sg:pub.10.1038/s41467-019-13993-7
    17 sg:pub.10.1038/s41467-020-18631-1
    18 sg:pub.10.1038/s41558-020-0830-0
    19 sg:pub.10.1038/s41558-021-01000-1
    20 sg:pub.10.1038/s41586-018-0417-3
    21 sg:pub.10.1038/s41598-019-52277-4
    22 sg:pub.10.1038/s43016-020-00148-x
    23 sg:pub.10.1038/s43016-020-0028-7
    24 sg:pub.10.1038/s43016-021-00240-w
    25 sg:pub.10.1038/s43016-021-00341-6
    26 sg:pub.10.1038/s43016-021-00400-y
    27 sg:pub.10.1038/sdata.2016.48
    28 schema:datePublished 2022-09-01
    29 schema:datePublishedReg 2022-09-01
    30 schema:description Warming temperatures tend to damage crop yields, yet the influence of water supply on global yields and its relation to temperature stress remains unclear. Here we use satellite-based measurements to provide empirical estimates of how root zone soil moisture and surface air temperature jointly influence the global productivity of maize, soybeans, millet and sorghum. Relative to empirical models using precipitation as a proxy for water supply, we find that models using soil moisture explain 30–120% more of the interannual yield variation across crops. Models using soil moisture also better separate water-supply stress from correlated heat stress and show that soil moisture and temperature contribute roughly equally to historical variations in yield. Globally, our models project yield damages of −9% to −32% across crops by end-of-century under Shared Socioeconomic Pathway 5-8.5 from changes in temperature and soil moisture. By contrast, projections using temperature and precipitation overestimate damages by 28% to 320% across crops both because they confound stresses from dryness and heat and because changes in soil moisture and temperature diverge from their historical association due to climate change. Our results demonstrate the importance of accurately representing water supply for predicting changes in global agricultural productivity and for designing effective adaptation strategies.
    31 schema:genre article
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N4e05bde724a142a58e44feb50067cf2f
    34 Nfe4b0fdd15f24e8ca47d0b55d8fd48cc
    35 sg:journal.1363506
    36 schema:keywords accurate specification
    37 adaptation strategies
    38 agricultural productivity
    39 air temperature
    40 association
    41 century
    42 changes
    43 climate change
    44 contrast
    45 crop production
    46 crop yield
    47 crops
    48 damage
    49 diverges
    50 dryness
    51 effective adaptation strategies
    52 empirical estimates
    53 empirical model
    54 end
    55 estimates
    56 global agricultural productivity
    57 global crop production
    58 global productivity
    59 global yield
    60 heat
    61 heat stress
    62 historical association
    63 historical variation
    64 importance
    65 influence
    66 interannual yield variation
    67 maize
    68 measurements
    69 millet
    70 model
    71 moisture
    72 pathway 5
    73 precipitation
    74 production
    75 productivity
    76 projections
    77 proxy
    78 relation
    79 results
    80 root zone soil moisture
    81 satellite-based measurements
    82 socioeconomic pathway 5
    83 soil moisture
    84 sorghum
    85 soybean
    86 specification
    87 strategies
    88 stress
    89 supply
    90 surface air temperature
    91 temperature
    92 temperature diverges
    93 temperature stress
    94 variation
    95 water supply
    96 water supply stress
    97 yield
    98 yield damage
    99 yield variation
    100 zone soil moisture
    101 schema:name More accurate specification of water supply shows its importance for global crop production
    102 schema:pagination 753-763
    103 schema:productId Nb637f8f502a443b2af74697689d64008
    104 Nfeb59b8d147d403ca77489b884dfe8e9
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151122548
    106 https://doi.org/10.1038/s43016-022-00592-x
    107 schema:sdDatePublished 2022-12-01T06:43
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher N3af5c53e9e8e4655a5e7e3f579cb9c41
    110 schema:url https://doi.org/10.1038/s43016-022-00592-x
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N157a57aa5432417f92db243e593f5f11 rdf:first sg:person.0662112377.20
    115 rdf:rest N3d69410be8d84c579c8717f7d66a6667
    116 N3af5c53e9e8e4655a5e7e3f579cb9c41 schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N3d69410be8d84c579c8717f7d66a6667 rdf:first sg:person.01016572724.82
    119 rdf:rest rdf:nil
    120 N4b965a52b0484642b233fdde8cef2b1c rdf:first sg:person.01324066707.51
    121 rdf:rest N157a57aa5432417f92db243e593f5f11
    122 N4e05bde724a142a58e44feb50067cf2f schema:volumeNumber 3
    123 rdf:type schema:PublicationVolume
    124 Na6b3c9cf7ea342f69a55e5238a1b30c0 rdf:first sg:person.011343630141.22
    125 rdf:rest N4b965a52b0484642b233fdde8cef2b1c
    126 Nb637f8f502a443b2af74697689d64008 schema:name doi
    127 schema:value 10.1038/s43016-022-00592-x
    128 rdf:type schema:PropertyValue
    129 Nfe4b0fdd15f24e8ca47d0b55d8fd48cc schema:issueNumber 9
    130 rdf:type schema:PublicationIssue
    131 Nfeb59b8d147d403ca77489b884dfe8e9 schema:name dimensions_id
    132 schema:value pub.1151122548
    133 rdf:type schema:PropertyValue
    134 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Earth Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Physical Geography and Environmental Geoscience
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Environmental Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Soil Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Biological Sciences
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Plant Biology
    151 rdf:type schema:DefinedTerm
    152 sg:journal.1363506 schema:issn 2662-1355
    153 schema:name Nature Food
    154 schema:publisher Springer Nature
    155 rdf:type schema:Periodical
    156 sg:person.01016572724.82 schema:affiliation grid-institutes:grid.38142.3c
    157 schema:familyName Huybers
    158 schema:givenName Peter
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016572724.82
    160 rdf:type schema:Person
    161 sg:person.011343630141.22 schema:affiliation grid-institutes:grid.38142.3c
    162 schema:familyName Proctor
    163 schema:givenName Jonathan
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011343630141.22
    165 rdf:type schema:Person
    166 sg:person.01324066707.51 schema:affiliation grid-institutes:grid.266093.8
    167 schema:familyName Rigden
    168 schema:givenName Angela
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324066707.51
    170 rdf:type schema:Person
    171 sg:person.0662112377.20 schema:affiliation grid-institutes:grid.56466.37
    172 schema:familyName Chan
    173 schema:givenName Duo
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662112377.20
    175 rdf:type schema:Person
    176 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
    177 https://doi.org/10.1007/978-0-387-84858-7
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s00271-018-0580-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105173979
    180 https://doi.org/10.1007/s00271-018-0580-1
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s10584-019-02555-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1122301493
    183 https://doi.org/10.1007/s10584-019-02555-x
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nclimate1832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011317676
    186 https://doi.org/10.1038/nclimate1832
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nclimate2825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050757368
    189 https://doi.org/10.1038/nclimate2825
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nclimate3114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041542738
    192 https://doi.org/10.1038/nclimate3114
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/ncomms13931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030248798
    195 https://doi.org/10.1038/ncomms13931
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/ncomms6989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010392333
    198 https://doi.org/10.1038/ncomms6989
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/s41467-019-13993-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123915232
    201 https://doi.org/10.1038/s41467-019-13993-7
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/s41467-020-18631-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131257031
    204 https://doi.org/10.1038/s41467-020-18631-1
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/s41558-020-0830-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130005911
    207 https://doi.org/10.1038/s41558-020-0830-0
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/s41558-021-01000-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136848490
    210 https://doi.org/10.1038/s41558-021-01000-1
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/s41586-018-0417-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106055720
    213 https://doi.org/10.1038/s41586-018-0417-3
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/s41598-019-52277-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122304683
    216 https://doi.org/10.1038/s41598-019-52277-4
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/s43016-020-00148-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1130833932
    219 https://doi.org/10.1038/s43016-020-00148-x
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/s43016-020-0028-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124938109
    222 https://doi.org/10.1038/s43016-020-0028-7
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/s43016-021-00240-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1136508961
    225 https://doi.org/10.1038/s43016-021-00240-w
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/s43016-021-00341-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141235137
    228 https://doi.org/10.1038/s43016-021-00341-6
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/s43016-021-00400-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1142312971
    231 https://doi.org/10.1038/s43016-021-00400-y
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/sdata.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006730135
    234 https://doi.org/10.1038/sdata.2016.48
    235 rdf:type schema:CreativeWork
    236 grid-institutes:grid.266093.8 schema:alternateName Department of Earth System Science, University of California Irvine, Irvine, CA, USA
    237 schema:name Department of Earth System Science, University of California Irvine, Irvine, CA, USA
    238 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
    239 rdf:type schema:Organization
    240 grid-institutes:grid.38142.3c schema:alternateName Center for the Environment and Data Science Initiative, Harvard University, Cambridge, MA, USA
    241 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
    242 schema:name Center for the Environment and Data Science Initiative, Harvard University, Cambridge, MA, USA
    243 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
    244 rdf:type schema:Organization
    245 grid-institutes:grid.56466.37 schema:alternateName Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
    246 schema:name Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...