Machine learning can guide food security efforts when primary data are not available View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-01

AUTHORS

Giulia Martini, Alberto Bracci, Lorenzo Riches, Sejal Jaiswal, Matteo Corea, Jonathan Rivers, Arif Husain, Elisa Omodei

ABSTRACT

Estimating how many people are food insecure and where they are is of fundamental importance for governments and humanitarian organizations to make informed and timely decisions on relevant policies and programmes. In this study, we propose a machine learning approach to predict the prevalence of people with insufficient food consumption and of people using crisis or above-crisis food-based coping when primary data are not available. Making use of a unique global dataset, the proposed models can explain up to 81% of the variation in insufficient food consumption and up to 73% of the variation in crisis or above food-based coping levels. We also show that the proposed models can nowcast the food security situation in near real time and propose a method to identify which variables are driving the changes observed in predicted trends—which is key to make predictions serviceable to decision-makers. More... »

PAGES

716-728

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s43016-022-00587-8

DOI

http://dx.doi.org/10.1038/s43016-022-00587-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1151025704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.452890.2", 
          "name": [
            "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martini", 
        "givenName": "Giulia", 
        "id": "sg:person.015104164221.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015104164221.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy", 
            "Department of Mathematics, University of London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bracci", 
        "givenName": "Alberto", 
        "id": "sg:person.016136056577.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016136056577.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.452890.2", 
          "name": [
            "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riches", 
        "givenName": "Lorenzo", 
        "id": "sg:person.010571434421.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010571434421.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.452890.2", 
          "name": [
            "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaiswal", 
        "givenName": "Sejal", 
        "id": "sg:person.016477125221.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016477125221.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.452890.2", 
          "name": [
            "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corea", 
        "givenName": "Matteo", 
        "id": "sg:person.07774054021.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774054021.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.452890.2", 
          "name": [
            "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rivers", 
        "givenName": "Jonathan", 
        "id": "sg:person.011367015021.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011367015021.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.452890.2", 
          "name": [
            "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Husain", 
        "givenName": "Arif", 
        "id": "sg:person.012610236061.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610236061.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Network and Data Science, Central European University, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5146.6", 
          "name": [
            "World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy", 
            "Department of Network and Data Science, Central European University, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omodei", 
        "givenName": "Elisa", 
        "id": "sg:person.01217701001.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217701001.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjds/s13688-020-00235-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129741296", 
          "https://doi.org/10.1140/epjds/s13688-020-00235-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42256-019-0138-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124145969", 
          "https://doi.org/10.1038/s42256-019-0138-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-01", 
    "datePublishedReg": "2022-09-01", 
    "description": "Estimating how many people are food insecure and where they are is of fundamental importance for governments and humanitarian organizations to make informed and timely decisions on relevant policies and programmes. In this study, we propose a machine learning approach to predict the prevalence of people with insufficient food consumption and of people using crisis or above-crisis food-based coping when primary data are not available. Making use of a unique global dataset, the proposed models can explain up to 81% of the variation in insufficient food consumption and up to 73% of the variation in crisis or above food-based coping levels. We also show that the proposed models can nowcast the food security situation in near real time and propose a method to identify which variables are driving the changes observed in predicted trends\u2014which is key to make predictions serviceable to decision-makers.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s43016-022-00587-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1363506", 
        "issn": [
          "2662-1355"
        ], 
        "name": "Nature Food", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "primary data", 
      "unique global dataset", 
      "relevant policies", 
      "crisis", 
      "food security situation", 
      "food insecure", 
      "government", 
      "policy", 
      "food consumption", 
      "consumption", 
      "coping levels", 
      "security situation", 
      "people", 
      "insecure", 
      "humanitarian organizations", 
      "timely decisions", 
      "decisions", 
      "prevalence of people", 
      "coping", 
      "data", 
      "global dataset", 
      "model", 
      "situation", 
      "variables", 
      "trends", 
      "machine learning", 
      "learning", 
      "fundamental importance", 
      "importance", 
      "organization", 
      "program", 
      "study", 
      "machine", 
      "approach", 
      "dataset", 
      "variation", 
      "levels", 
      "real time", 
      "changes", 
      "prediction", 
      "food security efforts", 
      "security efforts", 
      "efforts", 
      "prevalence", 
      "use", 
      "time", 
      "method", 
      "insufficient food consumption"
    ], 
    "name": "Machine learning can guide food security efforts when primary data are not available", 
    "pagination": "716-728", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1151025704"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s43016-022-00587-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s43016-022-00587-8", 
      "https://app.dimensions.ai/details/publication/pub.1151025704"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_933.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s43016-022-00587-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s43016-022-00587-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s43016-022-00587-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s43016-022-00587-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s43016-022-00587-8'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      74 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s43016-022-00587-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne1f46d33098c45a189d3d6714bcfbbb3
4 schema:citation sg:pub.10.1038/s42256-019-0138-9
5 sg:pub.10.1140/epjds/s13688-020-00235-w
6 schema:datePublished 2022-09-01
7 schema:datePublishedReg 2022-09-01
8 schema:description Estimating how many people are food insecure and where they are is of fundamental importance for governments and humanitarian organizations to make informed and timely decisions on relevant policies and programmes. In this study, we propose a machine learning approach to predict the prevalence of people with insufficient food consumption and of people using crisis or above-crisis food-based coping when primary data are not available. Making use of a unique global dataset, the proposed models can explain up to 81% of the variation in insufficient food consumption and up to 73% of the variation in crisis or above food-based coping levels. We also show that the proposed models can nowcast the food security situation in near real time and propose a method to identify which variables are driving the changes observed in predicted trends—which is key to make predictions serviceable to decision-makers.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N49ea3d6dbc844d4c8334b471ecadc4cc
12 N8a86ccea1ea34142a3bf4b1328f7a364
13 sg:journal.1363506
14 schema:keywords approach
15 changes
16 consumption
17 coping
18 coping levels
19 crisis
20 data
21 dataset
22 decisions
23 efforts
24 food consumption
25 food insecure
26 food security efforts
27 food security situation
28 fundamental importance
29 global dataset
30 government
31 humanitarian organizations
32 importance
33 insecure
34 insufficient food consumption
35 learning
36 levels
37 machine
38 machine learning
39 method
40 model
41 organization
42 people
43 policy
44 prediction
45 prevalence
46 prevalence of people
47 primary data
48 program
49 real time
50 relevant policies
51 security efforts
52 security situation
53 situation
54 study
55 time
56 timely decisions
57 trends
58 unique global dataset
59 use
60 variables
61 variation
62 schema:name Machine learning can guide food security efforts when primary data are not available
63 schema:pagination 716-728
64 schema:productId Nb27c7f17a9cd456f98b821abfc5ad69e
65 Ne33e9e0ecdea49958f4d5bcf4c54934e
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151025704
67 https://doi.org/10.1038/s43016-022-00587-8
68 schema:sdDatePublished 2022-12-01T06:44
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N0649e637de5b4a3a9bf3992f376e3820
71 schema:url https://doi.org/10.1038/s43016-022-00587-8
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N05cf922c297d46428291e341a276fc9b rdf:first sg:person.07774054021.93
76 rdf:rest N4d3ce2c5cc9949748f112b5d41113901
77 N0649e637de5b4a3a9bf3992f376e3820 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N421b600069e5478992f7d63c2ae583ef rdf:first sg:person.012610236061.42
80 rdf:rest Nc92f6fbf45cf49ec864a807176801acb
81 N49ea3d6dbc844d4c8334b471ecadc4cc schema:volumeNumber 3
82 rdf:type schema:PublicationVolume
83 N4d3ce2c5cc9949748f112b5d41113901 rdf:first sg:person.011367015021.42
84 rdf:rest N421b600069e5478992f7d63c2ae583ef
85 N6495ab3d5a8945baa3b1340983e9bcc7 rdf:first sg:person.016477125221.95
86 rdf:rest N05cf922c297d46428291e341a276fc9b
87 N6f6d7718ecc641dc84f6faa09e89c999 rdf:first sg:person.016136056577.34
88 rdf:rest N860b1ae89796400eab63880927417288
89 N860b1ae89796400eab63880927417288 rdf:first sg:person.010571434421.08
90 rdf:rest N6495ab3d5a8945baa3b1340983e9bcc7
91 N8a86ccea1ea34142a3bf4b1328f7a364 schema:issueNumber 9
92 rdf:type schema:PublicationIssue
93 Nb27c7f17a9cd456f98b821abfc5ad69e schema:name dimensions_id
94 schema:value pub.1151025704
95 rdf:type schema:PropertyValue
96 Nc92f6fbf45cf49ec864a807176801acb rdf:first sg:person.01217701001.48
97 rdf:rest rdf:nil
98 Ne1f46d33098c45a189d3d6714bcfbbb3 rdf:first sg:person.015104164221.90
99 rdf:rest N6f6d7718ecc641dc84f6faa09e89c999
100 Ne33e9e0ecdea49958f4d5bcf4c54934e schema:name doi
101 schema:value 10.1038/s43016-022-00587-8
102 rdf:type schema:PropertyValue
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
107 schema:name Artificial Intelligence and Image Processing
108 rdf:type schema:DefinedTerm
109 sg:journal.1363506 schema:issn 2662-1355
110 schema:name Nature Food
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.010571434421.08 schema:affiliation grid-institutes:grid.452890.2
114 schema:familyName Riches
115 schema:givenName Lorenzo
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010571434421.08
117 rdf:type schema:Person
118 sg:person.011367015021.42 schema:affiliation grid-institutes:grid.452890.2
119 schema:familyName Rivers
120 schema:givenName Jonathan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011367015021.42
122 rdf:type schema:Person
123 sg:person.01217701001.48 schema:affiliation grid-institutes:grid.5146.6
124 schema:familyName Omodei
125 schema:givenName Elisa
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217701001.48
127 rdf:type schema:Person
128 sg:person.012610236061.42 schema:affiliation grid-institutes:grid.452890.2
129 schema:familyName Husain
130 schema:givenName Arif
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610236061.42
132 rdf:type schema:Person
133 sg:person.015104164221.90 schema:affiliation grid-institutes:grid.452890.2
134 schema:familyName Martini
135 schema:givenName Giulia
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015104164221.90
137 rdf:type schema:Person
138 sg:person.016136056577.34 schema:affiliation grid-institutes:grid.4464.2
139 schema:familyName Bracci
140 schema:givenName Alberto
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016136056577.34
142 rdf:type schema:Person
143 sg:person.016477125221.95 schema:affiliation grid-institutes:grid.452890.2
144 schema:familyName Jaiswal
145 schema:givenName Sejal
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016477125221.95
147 rdf:type schema:Person
148 sg:person.07774054021.93 schema:affiliation grid-institutes:grid.452890.2
149 schema:familyName Corea
150 schema:givenName Matteo
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774054021.93
152 rdf:type schema:Person
153 sg:pub.10.1038/s42256-019-0138-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124145969
154 https://doi.org/10.1038/s42256-019-0138-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1140/epjds/s13688-020-00235-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1129741296
157 https://doi.org/10.1140/epjds/s13688-020-00235-w
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.4464.2 schema:alternateName Department of Mathematics, University of London, London, UK
160 schema:name Department of Mathematics, University of London, London, UK
161 World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy
162 rdf:type schema:Organization
163 grid-institutes:grid.452890.2 schema:alternateName World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy
164 schema:name World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy
165 rdf:type schema:Organization
166 grid-institutes:grid.5146.6 schema:alternateName Department of Network and Data Science, Central European University, Vienna, Austria
167 schema:name Department of Network and Data Science, Central European University, Vienna, Austria
168 World Food Programme, Research, Assessment and Monitoring Division (RAM), Rome, Italy
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...