Ontology type: schema:ScholarlyArticle
2019-02
AUTHORSGhalib A Bello, Timothy J W Dawes, Jinming Duan, Carlo Biffi, Antonio de Marvao, Luke S G E Howard, J Simon R Gibbs, Martin R Wilkins, Stuart A Cook, Daniel Rueckert, Declan P O'Regan
ABSTRACTMotion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p = .0012) for our model C=0.75 (95% CI: 0.70 - 0.79) than the human benchmark of C=0.59 (95% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival. More... »
PAGES95
http://scigraph.springernature.com/pub.10.1038/s42256-019-0019-2
DOIhttp://dx.doi.org/10.1038/s42256-019-0019-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112058164
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30801055
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"MRC London Institute of Medical Sciences, Imperial College London,UK."
],
"type": "Organization"
},
"familyName": "Bello",
"givenName": "Ghalib A",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"MRC London Institute of Medical Sciences, Imperial College London,UK.",
"National Heart and Lung Institute, Imperial College London, UK."
],
"type": "Organization"
},
"familyName": "Dawes",
"givenName": "Timothy J W",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"MRC London Institute of Medical Sciences, Imperial College London,UK.",
"Department of Computing, Imperial College London, UK."
],
"type": "Organization"
},
"familyName": "Duan",
"givenName": "Jinming",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"MRC London Institute of Medical Sciences, Imperial College London,UK.",
"Department of Computing, Imperial College London, UK."
],
"type": "Organization"
},
"familyName": "Biffi",
"givenName": "Carlo",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"MRC London Institute of Medical Sciences, Imperial College London,UK."
],
"type": "Organization"
},
"familyName": "de Marvao",
"givenName": "Antonio",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College Healthcare NHS Trust",
"id": "https://www.grid.ac/institutes/grid.417895.6",
"name": [
"Imperial College Healthcare NHS Trust, London, UK."
],
"type": "Organization"
},
"familyName": "Howard",
"givenName": "Luke S G E",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College Healthcare NHS Trust",
"id": "https://www.grid.ac/institutes/grid.417895.6",
"name": [
"National Heart and Lung Institute, Imperial College London, UK.",
"Imperial College Healthcare NHS Trust, London, UK."
],
"type": "Organization"
},
"familyName": "Gibbs",
"givenName": "J Simon R",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"Division of Experimental Medicine, Department of Medicine, Imperial College London, UK."
],
"type": "Organization"
},
"familyName": "Wilkins",
"givenName": "Martin R",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"MRC London Institute of Medical Sciences, Imperial College London,UK.",
"National Heart and Lung Institute, Imperial College London, UK.",
"National Heart Centre Singapore, Singapore, and Duke-NUS Graduate Medical School, Singapore."
],
"type": "Organization"
},
"familyName": "Cook",
"givenName": "Stuart A",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"Department of Computing, Imperial College London, UK."
],
"type": "Organization"
},
"familyName": "Rueckert",
"givenName": "Daniel",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"MRC London Institute of Medical Sciences, Imperial College London,UK."
],
"type": "Organization"
},
"familyName": "O'Regan",
"givenName": "Declan P",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10278-013-9604-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002405103",
"https://doi.org/10.1007/s10278-013-9604-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10278-013-9604-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002405103",
"https://doi.org/10.1007/s10278-013-9604-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.csbj.2016.11.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004091080"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.media.2013.04.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004187867"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btr597",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005259061"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.2016161315",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009835081"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circulationaha.114.010637",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011345305"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circulationaha.114.010637",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011345305"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btr511",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012366359"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2014.07.979",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013047510"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.114.002107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017679243"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circimaging.114.002107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017679243"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/aje/kwu140",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017703766"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/eurheartj/ehv317",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019762568"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.media.2015.08.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021754446"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jbi.2016.10.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028115945"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0110243",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031720838"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/sim.4780140108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033373649"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-057-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035503987",
"https://doi.org/10.1007/978-0-85729-057-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-057-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035503987",
"https://doi.org/10.1007/978-0-85729-057-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-016-4217-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035858680",
"https://doi.org/10.1007/s00330-016-4217-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-016-4217-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035858680",
"https://doi.org/10.1007/s00330-016-4217-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-51237-2_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036650911",
"https://doi.org/10.1007/978-3-319-51237-2_2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1097-0258(19960229)15:4<361::aid-sim168>3.0.co;2-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037104179"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1001/jama.1982.03320430047030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038627387"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2016/6795352",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038688614"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1532-429x-15-35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041103373",
"https://doi.org/10.1186/1532-429x-15-35"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-46478-7_51",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048275737",
"https://doi.org/10.1007/978-3-319-46478-7_51"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-20309-6_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051381581",
"https://doi.org/10.1007/978-3-319-20309-6_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1532-429x-15-91",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052338964",
"https://doi.org/10.1186/1532-429x-15-91"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1983.10477973",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058302834"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/eurheartj/ehv510",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059576710"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/42.796284",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061170839"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.7326/m14-0698",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073742342"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature21056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1074217286",
"https://doi.org/10.1038/nature21056"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature21056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1074217286",
"https://doi.org/10.1038/nature21056"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature21056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1074217286",
"https://doi.org/10.1038/nature21056"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/gigascience/gix005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083568878"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/gigascience/gix005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083568878"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.healun.2017.02.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083902372"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev-bioeng-071516-044442",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084228312"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1183/16000617.0108-2016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084249681"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1183/16000617.0108-2016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084249681"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1183/16000617.0108-2016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084249681"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.15420/cfr.2016:25:2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085310347"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.media.2017.06.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086028023"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10741-017-9621-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086044150",
"https://doi.org/10.1007/s10741-017-9621-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10741-017-9621-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086044150",
"https://doi.org/10.1007/s10741-017-9621-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacbts.2016.11.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086367886"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/3071178.3071208",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090598380"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0180944",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090670297"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.media.2017.07.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090904008"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circresaha.117.311312",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091132987"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circresaha.117.311312",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091132987"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-017-11817-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091665734",
"https://doi.org/10.1038/s41598-017-11817-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-017-12539-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091866095",
"https://doi.org/10.1038/s41598-017-12539-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2017/1279486",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092232528"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijcard.2017.10.106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092460981"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/3123266.3130141",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092535212"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/222208",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092851007"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/222208",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092851007"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/222208",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092851007"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/hco.0000000000000491",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093120736"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/hco.0000000000000491",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093120736"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icnn.1995.488968",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093669333"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2017.173",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095849007"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4018/978-1-60566-900-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1096031471"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12874-018-0482-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101228878",
"https://doi.org/10.1186/s12874-018-0482-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12874-018-0482-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101228878",
"https://doi.org/10.1186/s12874-018-0482-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12874-018-0482-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101228878",
"https://doi.org/10.1186/s12874-018-0482-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12874-018-0482-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101228878",
"https://doi.org/10.1186/s12874-018-0482-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rsif.2017.0387",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103153059"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rsif.2017.0387",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103153059"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rsif.2017.0387",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103153059"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11063-018-9828-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103170271",
"https://doi.org/10.1007/s11063-018-9828-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11063-018-9828-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103170271",
"https://doi.org/10.1007/s11063-018-9828-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11063-018-9828-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103170271",
"https://doi.org/10.1007/s11063-018-9828-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11063-018-9828-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103170271",
"https://doi.org/10.1007/s11063-018-9828-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pcbi.1006076",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103203182"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compeleceng.2018.04.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103638844"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/ehjci/jey120",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106005374"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/ehjci/jey120",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106005374"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/ehjci/jey120",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106005374"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/ehjci/jey120",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106005374"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12968-018-0471-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106947579",
"https://doi.org/10.1186/s12968-018-0471-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12968-018-0471-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106947579",
"https://doi.org/10.1186/s12968-018-0471-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12968-018-0471-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106947579",
"https://doi.org/10.1186/s12968-018-0471-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12968-018-0471-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106947579",
"https://doi.org/10.1186/s12968-018-0471-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-00934-2_52",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107019541",
"https://doi.org/10.1007/978-3-030-00934-2_52"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1109705929",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-4541-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705929",
"https://doi.org/10.1007/978-1-4899-4541-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-4541-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705929",
"https://doi.org/10.1007/978-1-4899-4541-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.2517-6161.1972.tb00899.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110457843"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.2517-6161.1972.tb00899.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110457843"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tmi.2019.2894322",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1111636818"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-02",
"datePublishedReg": "2019-02-01",
"description": "Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p = .0012) for our model C=0.75 (95% CI: 0.70 - 0.79) than the human benchmark of C=0.59 (95% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival.",
"genre": "research_article",
"id": "sg:pub.10.1038/s42256-019-0019-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7441966",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1336255",
"issn": [
"2522-5839"
],
"name": "Nature Machine Intelligence",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "1"
}
],
"name": "Deep-learning cardiac motion analysis for human survival prediction",
"pagination": "95",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"5bd7951ac82ce0006dd1abf3f1c2ee591dbcf32dfc2722d80f4be20e5732e850"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30801055"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101740243"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s42256-019-0019-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112058164"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s42256-019-0019-2",
"https://app.dimensions.ai/details/publication/pub.1112058164"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:20",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54331_00000002.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/s42256-019-0019-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s42256-019-0019-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s42256-019-0019-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s42256-019-0019-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s42256-019-0019-2'
This table displays all metadata directly associated to this object as RDF triples.
345 TRIPLES
21 PREDICATES
93 URIs
21 LITERALS
9 BLANK NODES