A role for analogue memory in AI hardware View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Geoffrey W. Burr

ABSTRACT

Memristor-based chips could lead the way to fast, energy-efficient AI hardware accelerators.

PAGES

10

References to SciGraph publications

Journal

TITLE

Nature Machine Intelligence

ISSUE

1

VOLUME

1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s42256-018-0007-y

DOI

http://dx.doi.org/10.1038/s42256-018-0007-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110767092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research \u2014 Almaden, San Jose, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burr", 
        "givenName": "Geoffrey W.", 
        "id": "sg:person.0763236107.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763236107.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3389/fnins.2016.00333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007675430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/jrd.2017.2716579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091667770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2017.2761740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092833667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201705914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100289242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0180-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104243621", 
          "https://doi.org/10.1038/s41586-018-0180-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6463/aac8a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104316644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42256-018-0001-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110767088", 
          "https://doi.org/10.1038/s42256-018-0001-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42256-018-0001-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110767088", 
          "https://doi.org/10.1038/s42256-018-0001-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Memristor-based chips could lead the way to fast, energy-efficient AI hardware accelerators.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/s42256-018-0007-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336255", 
        "issn": [
          "2522-5839"
        ], 
        "name": "Nature Machine Intelligence", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "A role for analogue memory in AI hardware", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5926bd677becbd925ad514ad246997d9a487927127df47408ca87e25756dbdb7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s42256-018-0007-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110767092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s42256-018-0007-y", 
      "https://app.dimensions.ai/details/publication/pub.1110767092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55823_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s42256-018-0007-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s42256-018-0007-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s42256-018-0007-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s42256-018-0007-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s42256-018-0007-y'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      20 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s42256-018-0007-y schema:author Na7879b061ad0472a9766a225d666680d
2 schema:citation sg:pub.10.1038/nature14539
3 sg:pub.10.1038/s41586-018-0180-5
4 sg:pub.10.1038/s42256-018-0001-4
5 https://doi.org/10.1002/adma.201705914
6 https://doi.org/10.1088/1361-6463/aac8a5
7 https://doi.org/10.1109/jproc.2017.2761740
8 https://doi.org/10.1147/jrd.2017.2716579
9 https://doi.org/10.3389/fnins.2016.00333
10 schema:datePublished 2019-01
11 schema:datePublishedReg 2019-01-01
12 schema:description Memristor-based chips could lead the way to fast, energy-efficient AI hardware accelerators.
13 schema:genre non_research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N3a2882ff5dc54c48839c28d773e51129
17 N6ac0403e2c7e4a078ac1d2559bc51e26
18 sg:journal.1336255
19 schema:name A role for analogue memory in AI hardware
20 schema:pagination 10
21 schema:productId N03cfe01bee004f15bce752bc40b053e1
22 N3d7f5262c3584339adb8e78cb305cfa9
23 Nf1a2ca8b82024a2b9f19bb2971728cb6
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110767092
25 https://doi.org/10.1038/s42256-018-0007-y
26 schema:sdDatePublished 2019-04-11T08:36
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nb77c44f319294ade8559393b10fdd79a
29 schema:url https://www.nature.com/articles/s42256-018-0007-y
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N03cfe01bee004f15bce752bc40b053e1 schema:name doi
34 schema:value 10.1038/s42256-018-0007-y
35 rdf:type schema:PropertyValue
36 N3a2882ff5dc54c48839c28d773e51129 schema:volumeNumber 1
37 rdf:type schema:PublicationVolume
38 N3d7f5262c3584339adb8e78cb305cfa9 schema:name dimensions_id
39 schema:value pub.1110767092
40 rdf:type schema:PropertyValue
41 N6ac0403e2c7e4a078ac1d2559bc51e26 schema:issueNumber 1
42 rdf:type schema:PublicationIssue
43 Na7879b061ad0472a9766a225d666680d rdf:first sg:person.0763236107.54
44 rdf:rest rdf:nil
45 Nb77c44f319294ade8559393b10fdd79a schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nf1a2ca8b82024a2b9f19bb2971728cb6 schema:name readcube_id
48 schema:value 5926bd677becbd925ad514ad246997d9a487927127df47408ca87e25756dbdb7
49 rdf:type schema:PropertyValue
50 sg:journal.1336255 schema:issn 2522-5839
51 schema:name Nature Machine Intelligence
52 rdf:type schema:Periodical
53 sg:person.0763236107.54 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
54 schema:familyName Burr
55 schema:givenName Geoffrey W.
56 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763236107.54
57 rdf:type schema:Person
58 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
59 https://doi.org/10.1038/nature14539
60 rdf:type schema:CreativeWork
61 sg:pub.10.1038/s41586-018-0180-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104243621
62 https://doi.org/10.1038/s41586-018-0180-5
63 rdf:type schema:CreativeWork
64 sg:pub.10.1038/s42256-018-0001-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110767088
65 https://doi.org/10.1038/s42256-018-0001-4
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1002/adma.201705914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100289242
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1088/1361-6463/aac8a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104316644
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1109/jproc.2017.2761740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092833667
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1147/jrd.2017.2716579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091667770
74 rdf:type schema:CreativeWork
75 https://doi.org/10.3389/fnins.2016.00333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007675430
76 rdf:type schema:CreativeWork
77 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
78 schema:name IBM Research — Almaden, San Jose, USA
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...