Understanding dense hydrogen at planetary conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-09-01

AUTHORS

Ravit Helled, Guglielmo Mazzola, Ronald Redmer

ABSTRACT

Materials at high pressures and temperatures are of great interest for planetary science and astrophysics, warm dense-matter physics and inertial confinement fusion research. Planetary structure models rely on an understanding of the behaviour of elements and their mixtures under conditions that do not exist on Earth; at the same time, planets serve as natural laboratories for studying materials at extreme conditions. The topic of dense hydrogen is timely given the recent accurate measurements of the gravitational fields of Jupiter and Saturn, the current and upcoming progress in shock experiments, and the advances in numerical simulations of materials at high pressure. In this Review we discuss the connection between modelling planetary interiors and the high-pressure physics of hydrogen and helium. We summarize key experiments and theoretical approaches for determining the equation of state and phase diagram of hydrogen and helium. We relate this to current knowledge of the internal structures of Jupiter and Saturn, and discuss the importance of high-pressure physics to their characterization. More... »

PAGES

562-574

References to SciGraph publications

  • 2004-10. A quantum fluid of metallic hydrogen suggested by first-principles calculations in NATURE
  • 2015-02-23. Raman spectroscopy of hot hydrogen above 200 GPa in NATURE MATERIALS
  • 2013-04-21. Layered convection as the origin of Saturn’s luminosity anomaly in NATURE GEOSCIENCE
  • 2007-05-27. Structure of phase III of solid hydrogen in NATURE PHYSICS
  • 2004-09. Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium in JETP LETTERS
  • 2016-01-06. Evidence for a new phase of dense hydrogen above 325 gigapascals in NATURE
  • 2016-04-15. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium in NATURE COMMUNICATIONS
  • 2020-09-09. Evidence for supercritical behaviour of high-pressure liquid hydrogen in NATURE
  • 2018-02. Quasi-Isentropic Compressibility of Deuterium at a Pressure of ~12 TPa in JETP LETTERS
  • 2015-11-09. Phase boundary of hot dense fluid hydrogen in SCIENTIFIC REPORTS
  • 2002-10. Shock compression of solid deuterium in JETP LETTERS
  • 2009-04. Evidence of maximum in the melting curve of hydrogen at megabar pressures in JETP LETTERS
  • 2015-08-24. The most incompressible metal osmium at static pressures above 750 gigapascals in NATURE
  • 2019-09-23. Semimetallic molecular hydrogen at pressure above 350 GPa in NATURE PHYSICS
  • 2004-10. A superconductor to superfluid phase transition in liquid metallic hydrogen in NATURE
  • 2011-02-22. Chemical processes in the deep interior of Uranus in NATURE COMMUNICATIONS
  • 2018-09-05. A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field in NATURE
  • 2015-08-17. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system in NATURE
  • 2014-03-19. Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation in NATURE COMMUNICATIONS
  • 2018. Magnetic Fields in the Solar System, Planets, Moons and Solar Wind Interactions in NONE
  • 2015-07-28. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures in NATURE COMMUNICATIONS
  • 2018-11-03. Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing in HANDBOOK OF EXOPLANETS
  • 2018-03-08. Measurement of Jupiter’s asymmetric gravity field in NATURE
  • 2018-03-08. A suppression of differential rotation in Jupiter’s deep interior in NATURE
  • 2019-05-08. Nanosecond X-ray diffraction of shock-compressed superionic water ice in NATURE
  • 2003-10. Shock-wave compression of solid deuterium at a pressure of 120 GPa in DOKLADY PHYSICS
  • 2020-01-29. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3

    DOI

    http://dx.doi.org/10.1038/s42254-020-0223-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130468463


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Helled", 
            "givenName": "Ravit", 
            "id": "sg:person.015372320145.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015372320145.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Quantum, IBM Research \u2014 Zurich, R\u00fcschlikon, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.410387.9", 
              "name": [
                "IBM Quantum, IBM Research \u2014 Zurich, R\u00fcschlikon, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mazzola", 
            "givenName": "Guglielmo", 
            "id": "sg:person.01320146310.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320146310.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Rostock, Rostock, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10493.3f", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Rostock, Rostock, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Redmer", 
            "givenName": "Ronald", 
            "id": "sg:person.0724761015.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724761015.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat4213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022149851", 
              "https://doi.org/10.1038/nmat4213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024735914", 
              "https://doi.org/10.1038/nature02968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-55333-7_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107988078", 
              "https://doi.org/10.1007/978-3-319-55333-7_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1623535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025880231", 
              "https://doi.org/10.1134/1.1623535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051866788", 
              "https://doi.org/10.1038/ncomms8794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1830656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036717902", 
              "https://doi.org/10.1134/1.1830656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101361348", 
              "https://doi.org/10.1038/nature25776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1528696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024388406", 
              "https://doi.org/10.1134/1.1528696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101359727", 
              "https://doi.org/10.1038/nature25775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029296188", 
              "https://doi.org/10.1038/nature14964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025343730", 
              "https://doi.org/10.1038/nphys625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep16560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045720657", 
              "https://doi.org/10.1038/srep16560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-019-0646-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121184615", 
              "https://doi.org/10.1038/s41567-019-0646-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017986734", 
              "https://doi.org/10.1038/ncomms11189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006422739", 
              "https://doi.org/10.1038/nature02910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049063927", 
              "https://doi.org/10.1038/ncomms1198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0468-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106420918", 
              "https://doi.org/10.1038/s41586-018-0468-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033219288", 
              "https://doi.org/10.1038/ncomms4487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024176949", 
              "https://doi.org/10.1038/ngeo1791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-64292-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100287415", 
              "https://doi.org/10.1007/978-3-319-64292-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1927-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124366357", 
              "https://doi.org/10.1038/s41586-019-1927-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005260441", 
              "https://doi.org/10.1038/nature16164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021364009040031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012003824", 
              "https://doi.org/10.1134/s0021364009040031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021364018030116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103260606", 
              "https://doi.org/10.1134/s0021364018030116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2677-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130695211", 
              "https://doi.org/10.1038/s41586-020-2677-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1114-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113948238", 
              "https://doi.org/10.1038/s41586-019-1114-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035063751", 
              "https://doi.org/10.1038/nature14681"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-09-01", 
        "datePublishedReg": "2020-09-01", 
        "description": "Materials at high pressures and temperatures are of great interest for planetary science and astrophysics, warm dense-matter physics and inertial confinement fusion research. Planetary structure models rely on an understanding of the behaviour of elements and their mixtures under conditions that do not exist on Earth; at the same time, planets serve as natural laboratories for studying materials at extreme conditions. The topic of dense hydrogen is timely given the recent accurate measurements of the gravitational fields of Jupiter and Saturn, the current and upcoming progress in shock experiments, and the advances in numerical simulations of materials at high pressure. In this Review we discuss the connection between modelling planetary interiors and the high-pressure physics of hydrogen and helium. We summarize key experiments and theoretical approaches for determining the equation of state and phase diagram of hydrogen and helium. We relate this to current knowledge of the internal structures of Jupiter and Saturn, and discuss the importance of high-pressure physics to their characterization.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s42254-020-0223-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1336253", 
            "issn": [
              "2522-5820"
            ], 
            "name": "Nature Reviews Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "high-pressure physics", 
          "dense hydrogen", 
          "warm dense matter physics", 
          "inertial confinement fusion research", 
          "dense matter physics", 
          "recent accurate measurements", 
          "equation of state", 
          "fusion research", 
          "planetary interiors", 
          "gravitational field", 
          "planetary science", 
          "planetary conditions", 
          "physics", 
          "high pressure", 
          "Jupiter", 
          "Saturn", 
          "key experiments", 
          "phase diagram", 
          "helium", 
          "shock experiments", 
          "accurate measurement", 
          "extreme conditions", 
          "upcoming progress", 
          "hydrogen", 
          "numerical simulations", 
          "astrophysics", 
          "internal structure", 
          "theoretical approach", 
          "structure model", 
          "planets", 
          "behavior of elements", 
          "materials", 
          "great interest", 
          "Earth", 
          "field", 
          "measurements", 
          "experiments", 
          "diagram", 
          "temperature", 
          "state", 
          "conditions", 
          "pressure", 
          "simulations", 
          "interior", 
          "structure", 
          "natural laboratory", 
          "equations", 
          "same time", 
          "mixture", 
          "characterization", 
          "behavior", 
          "elements", 
          "laboratory", 
          "progress", 
          "model", 
          "approach", 
          "time", 
          "interest", 
          "connection", 
          "science", 
          "advances", 
          "understanding", 
          "research", 
          "topic", 
          "importance", 
          "knowledge", 
          "review", 
          "current knowledge", 
          "confinement fusion research", 
          "Planetary structure models"
        ], 
        "name": "Understanding dense hydrogen at planetary conditions", 
        "pagination": "562-574", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130468463"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s42254-020-0223-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s42254-020-0223-3", 
          "https://app.dimensions.ai/details/publication/pub.1130468463"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_834.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s42254-020-0223-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    255 TRIPLES      22 PREDICATES      122 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s42254-020-0223-3 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N0b7de874455447bba61c0fd603f5caea
    4 schema:citation sg:pub.10.1007/978-3-319-55333-7_44
    5 sg:pub.10.1007/978-3-319-64292-5
    6 sg:pub.10.1038/nature02910
    7 sg:pub.10.1038/nature02968
    8 sg:pub.10.1038/nature14681
    9 sg:pub.10.1038/nature14964
    10 sg:pub.10.1038/nature16164
    11 sg:pub.10.1038/nature25775
    12 sg:pub.10.1038/nature25776
    13 sg:pub.10.1038/ncomms11189
    14 sg:pub.10.1038/ncomms1198
    15 sg:pub.10.1038/ncomms4487
    16 sg:pub.10.1038/ncomms8794
    17 sg:pub.10.1038/ngeo1791
    18 sg:pub.10.1038/nmat4213
    19 sg:pub.10.1038/nphys625
    20 sg:pub.10.1038/s41567-019-0646-x
    21 sg:pub.10.1038/s41586-018-0468-5
    22 sg:pub.10.1038/s41586-019-1114-6
    23 sg:pub.10.1038/s41586-019-1927-3
    24 sg:pub.10.1038/s41586-020-2677-y
    25 sg:pub.10.1038/srep16560
    26 sg:pub.10.1134/1.1528696
    27 sg:pub.10.1134/1.1623535
    28 sg:pub.10.1134/1.1830656
    29 sg:pub.10.1134/s0021364009040031
    30 sg:pub.10.1134/s0021364018030116
    31 schema:datePublished 2020-09-01
    32 schema:datePublishedReg 2020-09-01
    33 schema:description Materials at high pressures and temperatures are of great interest for planetary science and astrophysics, warm dense-matter physics and inertial confinement fusion research. Planetary structure models rely on an understanding of the behaviour of elements and their mixtures under conditions that do not exist on Earth; at the same time, planets serve as natural laboratories for studying materials at extreme conditions. The topic of dense hydrogen is timely given the recent accurate measurements of the gravitational fields of Jupiter and Saturn, the current and upcoming progress in shock experiments, and the advances in numerical simulations of materials at high pressure. In this Review we discuss the connection between modelling planetary interiors and the high-pressure physics of hydrogen and helium. We summarize key experiments and theoretical approaches for determining the equation of state and phase diagram of hydrogen and helium. We relate this to current knowledge of the internal structures of Jupiter and Saturn, and discuss the importance of high-pressure physics to their characterization.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N17f21f9ee7834bee87663e44aedbad0f
    38 Ne2babe33cae14df3ab84b8c0eda98c5a
    39 sg:journal.1336253
    40 schema:keywords Earth
    41 Jupiter
    42 Planetary structure models
    43 Saturn
    44 accurate measurement
    45 advances
    46 approach
    47 astrophysics
    48 behavior
    49 behavior of elements
    50 characterization
    51 conditions
    52 confinement fusion research
    53 connection
    54 current knowledge
    55 dense hydrogen
    56 dense matter physics
    57 diagram
    58 elements
    59 equation of state
    60 equations
    61 experiments
    62 extreme conditions
    63 field
    64 fusion research
    65 gravitational field
    66 great interest
    67 helium
    68 high pressure
    69 high-pressure physics
    70 hydrogen
    71 importance
    72 inertial confinement fusion research
    73 interest
    74 interior
    75 internal structure
    76 key experiments
    77 knowledge
    78 laboratory
    79 materials
    80 measurements
    81 mixture
    82 model
    83 natural laboratory
    84 numerical simulations
    85 phase diagram
    86 physics
    87 planetary conditions
    88 planetary interiors
    89 planetary science
    90 planets
    91 pressure
    92 progress
    93 recent accurate measurements
    94 research
    95 review
    96 same time
    97 science
    98 shock experiments
    99 simulations
    100 state
    101 structure
    102 structure model
    103 temperature
    104 theoretical approach
    105 time
    106 topic
    107 understanding
    108 upcoming progress
    109 warm dense matter physics
    110 schema:name Understanding dense hydrogen at planetary conditions
    111 schema:pagination 562-574
    112 schema:productId N3c406ac3a5034d11b3e3ffd8d34359fe
    113 Ne28990ffab01464fb27c0b527d22503f
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130468463
    115 https://doi.org/10.1038/s42254-020-0223-3
    116 schema:sdDatePublished 2022-01-01T18:56
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher N7ed71398f2da4ec6b423f07ba3c68406
    119 schema:url https://doi.org/10.1038/s42254-020-0223-3
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N0b7de874455447bba61c0fd603f5caea rdf:first sg:person.015372320145.30
    124 rdf:rest Nc08c000dae474c249b0db486f91b8136
    125 N0f1fa7e975c24a618b380e619491bdff rdf:first sg:person.0724761015.60
    126 rdf:rest rdf:nil
    127 N17f21f9ee7834bee87663e44aedbad0f schema:issueNumber 10
    128 rdf:type schema:PublicationIssue
    129 N3c406ac3a5034d11b3e3ffd8d34359fe schema:name dimensions_id
    130 schema:value pub.1130468463
    131 rdf:type schema:PropertyValue
    132 N7ed71398f2da4ec6b423f07ba3c68406 schema:name Springer Nature - SN SciGraph project
    133 rdf:type schema:Organization
    134 Nc08c000dae474c249b0db486f91b8136 rdf:first sg:person.01320146310.35
    135 rdf:rest N0f1fa7e975c24a618b380e619491bdff
    136 Ne28990ffab01464fb27c0b527d22503f schema:name doi
    137 schema:value 10.1038/s42254-020-0223-3
    138 rdf:type schema:PropertyValue
    139 Ne2babe33cae14df3ab84b8c0eda98c5a schema:volumeNumber 2
    140 rdf:type schema:PublicationVolume
    141 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Physical Sciences
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    146 rdf:type schema:DefinedTerm
    147 sg:journal.1336253 schema:issn 2522-5820
    148 schema:name Nature Reviews Physics
    149 schema:publisher Springer Nature
    150 rdf:type schema:Periodical
    151 sg:person.01320146310.35 schema:affiliation grid-institutes:grid.410387.9
    152 schema:familyName Mazzola
    153 schema:givenName Guglielmo
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320146310.35
    155 rdf:type schema:Person
    156 sg:person.015372320145.30 schema:affiliation grid-institutes:grid.7400.3
    157 schema:familyName Helled
    158 schema:givenName Ravit
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015372320145.30
    160 rdf:type schema:Person
    161 sg:person.0724761015.60 schema:affiliation grid-institutes:grid.10493.3f
    162 schema:familyName Redmer
    163 schema:givenName Ronald
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724761015.60
    165 rdf:type schema:Person
    166 sg:pub.10.1007/978-3-319-55333-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107988078
    167 https://doi.org/10.1007/978-3-319-55333-7_44
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/978-3-319-64292-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100287415
    170 https://doi.org/10.1007/978-3-319-64292-5
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature02910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006422739
    173 https://doi.org/10.1038/nature02910
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nature02968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024735914
    176 https://doi.org/10.1038/nature02968
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nature14681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035063751
    179 https://doi.org/10.1038/nature14681
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nature14964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029296188
    182 https://doi.org/10.1038/nature14964
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature16164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005260441
    185 https://doi.org/10.1038/nature16164
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature25775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101359727
    188 https://doi.org/10.1038/nature25775
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature25776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101361348
    191 https://doi.org/10.1038/nature25776
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/ncomms11189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017986734
    194 https://doi.org/10.1038/ncomms11189
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/ncomms1198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049063927
    197 https://doi.org/10.1038/ncomms1198
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ncomms4487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033219288
    200 https://doi.org/10.1038/ncomms4487
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ncomms8794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051866788
    203 https://doi.org/10.1038/ncomms8794
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ngeo1791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024176949
    206 https://doi.org/10.1038/ngeo1791
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nmat4213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022149851
    209 https://doi.org/10.1038/nmat4213
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nphys625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343730
    212 https://doi.org/10.1038/nphys625
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/s41567-019-0646-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1121184615
    215 https://doi.org/10.1038/s41567-019-0646-x
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/s41586-018-0468-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106420918
    218 https://doi.org/10.1038/s41586-018-0468-5
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/s41586-019-1114-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113948238
    221 https://doi.org/10.1038/s41586-019-1114-6
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/s41586-019-1927-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124366357
    224 https://doi.org/10.1038/s41586-019-1927-3
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/s41586-020-2677-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1130695211
    227 https://doi.org/10.1038/s41586-020-2677-y
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/srep16560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045720657
    230 https://doi.org/10.1038/srep16560
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1134/1.1528696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024388406
    233 https://doi.org/10.1134/1.1528696
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1134/1.1623535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025880231
    236 https://doi.org/10.1134/1.1623535
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1134/1.1830656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036717902
    239 https://doi.org/10.1134/1.1830656
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1134/s0021364009040031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012003824
    242 https://doi.org/10.1134/s0021364009040031
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1134/s0021364018030116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103260606
    245 https://doi.org/10.1134/s0021364018030116
    246 rdf:type schema:CreativeWork
    247 grid-institutes:grid.10493.3f schema:alternateName Institut für Physik, Universität Rostock, Rostock, Germany
    248 schema:name Institut für Physik, Universität Rostock, Rostock, Germany
    249 rdf:type schema:Organization
    250 grid-institutes:grid.410387.9 schema:alternateName IBM Quantum, IBM Research — Zurich, Rüschlikon, Switzerland
    251 schema:name IBM Quantum, IBM Research — Zurich, Rüschlikon, Switzerland
    252 rdf:type schema:Organization
    253 grid-institutes:grid.7400.3 schema:alternateName Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Zurich, Switzerland
    254 schema:name Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Zurich, Switzerland
    255 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...