Understanding dense hydrogen at planetary conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-09-01

AUTHORS

Ravit Helled, Guglielmo Mazzola, Ronald Redmer

ABSTRACT

Materials at high pressures and temperatures are of great interest for planetary science and astrophysics, warm dense-matter physics and inertial confinement fusion research. Planetary structure models rely on an understanding of the behaviour of elements and their mixtures under conditions that do not exist on Earth; at the same time, planets serve as natural laboratories for studying materials at extreme conditions. The topic of dense hydrogen is timely given the recent accurate measurements of the gravitational fields of Jupiter and Saturn, the current and upcoming progress in shock experiments, and the advances in numerical simulations of materials at high pressure. In this Review we discuss the connection between modelling planetary interiors and the high-pressure physics of hydrogen and helium. We summarize key experiments and theoretical approaches for determining the equation of state and phase diagram of hydrogen and helium. We relate this to current knowledge of the internal structures of Jupiter and Saturn, and discuss the importance of high-pressure physics to their characterization. More... »

PAGES

562-574

References to SciGraph publications

  • 2004-10. A quantum fluid of metallic hydrogen suggested by first-principles calculations in NATURE
  • 2015-02-23. Raman spectroscopy of hot hydrogen above 200 GPa in NATURE MATERIALS
  • 2013-04-21. Layered convection as the origin of Saturn’s luminosity anomaly in NATURE GEOSCIENCE
  • 2007-05-27. Structure of phase III of solid hydrogen in NATURE PHYSICS
  • 2004-09. Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium in JETP LETTERS
  • 2016-01-06. Evidence for a new phase of dense hydrogen above 325 gigapascals in NATURE
  • 2016-04-15. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium in NATURE COMMUNICATIONS
  • 2020-09-09. Evidence for supercritical behaviour of high-pressure liquid hydrogen in NATURE
  • 2018-02. Quasi-Isentropic Compressibility of Deuterium at a Pressure of ~12 TPa in JETP LETTERS
  • 2015-11-09. Phase boundary of hot dense fluid hydrogen in SCIENTIFIC REPORTS
  • 2002-10. Shock compression of solid deuterium in JETP LETTERS
  • 2009-04. Evidence of maximum in the melting curve of hydrogen at megabar pressures in JETP LETTERS
  • 2015-08-24. The most incompressible metal osmium at static pressures above 750 gigapascals in NATURE
  • 2019-09-23. Semimetallic molecular hydrogen at pressure above 350 GPa in NATURE PHYSICS
  • 2004-10. A superconductor to superfluid phase transition in liquid metallic hydrogen in NATURE
  • 2011-02-22. Chemical processes in the deep interior of Uranus in NATURE COMMUNICATIONS
  • 2018-09-05. A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field in NATURE
  • 2015-08-17. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system in NATURE
  • 2014-03-19. Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation in NATURE COMMUNICATIONS
  • 2018. Magnetic Fields in the Solar System, Planets, Moons and Solar Wind Interactions in NONE
  • 2015-07-28. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures in NATURE COMMUNICATIONS
  • 2018-11-03. Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing in HANDBOOK OF EXOPLANETS
  • 2018-03-08. Measurement of Jupiter’s asymmetric gravity field in NATURE
  • 2018-03-08. A suppression of differential rotation in Jupiter’s deep interior in NATURE
  • 2019-05-08. Nanosecond X-ray diffraction of shock-compressed superionic water ice in NATURE
  • 2003-10. Shock-wave compression of solid deuterium at a pressure of 120 GPa in DOKLADY PHYSICS
  • 2020-01-29. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3

    DOI

    http://dx.doi.org/10.1038/s42254-020-0223-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130468463


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Helled", 
            "givenName": "Ravit", 
            "id": "sg:person.015372320145.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015372320145.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Quantum, IBM Research \u2014 Zurich, R\u00fcschlikon, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.410387.9", 
              "name": [
                "IBM Quantum, IBM Research \u2014 Zurich, R\u00fcschlikon, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mazzola", 
            "givenName": "Guglielmo", 
            "id": "sg:person.01320146310.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320146310.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Rostock, Rostock, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10493.3f", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Rostock, Rostock, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Redmer", 
            "givenName": "Ronald", 
            "id": "sg:person.0724761015.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724761015.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms4487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033219288", 
              "https://doi.org/10.1038/ncomms4487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051866788", 
              "https://doi.org/10.1038/ncomms8794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1528696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024388406", 
              "https://doi.org/10.1134/1.1528696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1830656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036717902", 
              "https://doi.org/10.1134/1.1830656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1623535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025880231", 
              "https://doi.org/10.1134/1.1623535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021364009040031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012003824", 
              "https://doi.org/10.1134/s0021364009040031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101361348", 
              "https://doi.org/10.1038/nature25776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101359727", 
              "https://doi.org/10.1038/nature25775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-64292-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100287415", 
              "https://doi.org/10.1007/978-3-319-64292-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2677-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130695211", 
              "https://doi.org/10.1038/s41586-020-2677-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021364018030116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103260606", 
              "https://doi.org/10.1134/s0021364018030116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1114-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113948238", 
              "https://doi.org/10.1038/s41586-019-1114-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017986734", 
              "https://doi.org/10.1038/ncomms11189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-019-0646-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121184615", 
              "https://doi.org/10.1038/s41567-019-0646-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025343730", 
              "https://doi.org/10.1038/nphys625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1927-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124366357", 
              "https://doi.org/10.1038/s41586-019-1927-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep16560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045720657", 
              "https://doi.org/10.1038/srep16560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049063927", 
              "https://doi.org/10.1038/ncomms1198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006422739", 
              "https://doi.org/10.1038/nature02910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029296188", 
              "https://doi.org/10.1038/nature14964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005260441", 
              "https://doi.org/10.1038/nature16164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024735914", 
              "https://doi.org/10.1038/nature02968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035063751", 
              "https://doi.org/10.1038/nature14681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022149851", 
              "https://doi.org/10.1038/nmat4213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-55333-7_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107988078", 
              "https://doi.org/10.1007/978-3-319-55333-7_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024176949", 
              "https://doi.org/10.1038/ngeo1791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0468-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106420918", 
              "https://doi.org/10.1038/s41586-018-0468-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-09-01", 
        "datePublishedReg": "2020-09-01", 
        "description": "Materials at high pressures and temperatures are of great interest for planetary science and astrophysics, warm dense-matter physics and inertial confinement fusion research. Planetary structure models rely on an understanding of the behaviour of elements and their mixtures under conditions that do not exist on Earth; at the same time, planets serve as natural laboratories for studying materials at extreme conditions. The topic of dense hydrogen is timely given the recent accurate measurements of the gravitational fields of Jupiter and Saturn, the current and upcoming progress in shock experiments, and the advances in numerical simulations of materials at high pressure. In this Review we discuss the connection between modelling planetary interiors and the high-pressure physics of hydrogen and helium. We summarize key experiments and theoretical approaches for determining the equation of state and phase diagram of hydrogen and helium. We relate this to current knowledge of the internal structures of Jupiter and Saturn, and discuss the importance of high-pressure physics to their characterization.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s42254-020-0223-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1336253", 
            "issn": [
              "2522-5820"
            ], 
            "name": "Nature Reviews Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "high-pressure physics", 
          "dense hydrogen", 
          "warm dense matter physics", 
          "inertial confinement fusion research", 
          "dense matter physics", 
          "recent accurate measurements", 
          "equation of state", 
          "fusion research", 
          "planetary interiors", 
          "gravitational field", 
          "planetary science", 
          "planetary conditions", 
          "physics", 
          "high pressure", 
          "Jupiter", 
          "Saturn", 
          "key experiments", 
          "phase diagram", 
          "shock experiments", 
          "helium", 
          "accurate measurement", 
          "upcoming progress", 
          "extreme conditions", 
          "numerical simulations", 
          "hydrogen", 
          "astrophysics", 
          "internal structure", 
          "theoretical approach", 
          "structure model", 
          "behavior of elements", 
          "planets", 
          "materials", 
          "great interest", 
          "Earth", 
          "measurements", 
          "field", 
          "experiments", 
          "diagram", 
          "temperature", 
          "pressure", 
          "conditions", 
          "state", 
          "simulations", 
          "interior", 
          "natural laboratory", 
          "structure", 
          "equations", 
          "same time", 
          "mixture", 
          "characterization", 
          "behavior", 
          "laboratory", 
          "elements", 
          "progress", 
          "model", 
          "time", 
          "approach", 
          "interest", 
          "connection", 
          "advances", 
          "science", 
          "understanding", 
          "research", 
          "topic", 
          "importance", 
          "knowledge", 
          "review", 
          "current knowledge"
        ], 
        "name": "Understanding dense hydrogen at planetary conditions", 
        "pagination": "562-574", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130468463"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s42254-020-0223-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s42254-020-0223-3", 
          "https://app.dimensions.ai/details/publication/pub.1130468463"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_870.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s42254-020-0223-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s42254-020-0223-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    253 TRIPLES      22 PREDICATES      120 URIs      85 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s42254-020-0223-3 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nda1b47fd51fe4759a55a1d730709a687
    4 schema:citation sg:pub.10.1007/978-3-319-55333-7_44
    5 sg:pub.10.1007/978-3-319-64292-5
    6 sg:pub.10.1038/nature02910
    7 sg:pub.10.1038/nature02968
    8 sg:pub.10.1038/nature14681
    9 sg:pub.10.1038/nature14964
    10 sg:pub.10.1038/nature16164
    11 sg:pub.10.1038/nature25775
    12 sg:pub.10.1038/nature25776
    13 sg:pub.10.1038/ncomms11189
    14 sg:pub.10.1038/ncomms1198
    15 sg:pub.10.1038/ncomms4487
    16 sg:pub.10.1038/ncomms8794
    17 sg:pub.10.1038/ngeo1791
    18 sg:pub.10.1038/nmat4213
    19 sg:pub.10.1038/nphys625
    20 sg:pub.10.1038/s41567-019-0646-x
    21 sg:pub.10.1038/s41586-018-0468-5
    22 sg:pub.10.1038/s41586-019-1114-6
    23 sg:pub.10.1038/s41586-019-1927-3
    24 sg:pub.10.1038/s41586-020-2677-y
    25 sg:pub.10.1038/srep16560
    26 sg:pub.10.1134/1.1528696
    27 sg:pub.10.1134/1.1623535
    28 sg:pub.10.1134/1.1830656
    29 sg:pub.10.1134/s0021364009040031
    30 sg:pub.10.1134/s0021364018030116
    31 schema:datePublished 2020-09-01
    32 schema:datePublishedReg 2020-09-01
    33 schema:description Materials at high pressures and temperatures are of great interest for planetary science and astrophysics, warm dense-matter physics and inertial confinement fusion research. Planetary structure models rely on an understanding of the behaviour of elements and their mixtures under conditions that do not exist on Earth; at the same time, planets serve as natural laboratories for studying materials at extreme conditions. The topic of dense hydrogen is timely given the recent accurate measurements of the gravitational fields of Jupiter and Saturn, the current and upcoming progress in shock experiments, and the advances in numerical simulations of materials at high pressure. In this Review we discuss the connection between modelling planetary interiors and the high-pressure physics of hydrogen and helium. We summarize key experiments and theoretical approaches for determining the equation of state and phase diagram of hydrogen and helium. We relate this to current knowledge of the internal structures of Jupiter and Saturn, and discuss the importance of high-pressure physics to their characterization.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N4c62f4f952e542ea9f62803b136d9fdd
    38 Nc9f2adebceea4995adb1311fe964d92b
    39 sg:journal.1336253
    40 schema:keywords Earth
    41 Jupiter
    42 Saturn
    43 accurate measurement
    44 advances
    45 approach
    46 astrophysics
    47 behavior
    48 behavior of elements
    49 characterization
    50 conditions
    51 connection
    52 current knowledge
    53 dense hydrogen
    54 dense matter physics
    55 diagram
    56 elements
    57 equation of state
    58 equations
    59 experiments
    60 extreme conditions
    61 field
    62 fusion research
    63 gravitational field
    64 great interest
    65 helium
    66 high pressure
    67 high-pressure physics
    68 hydrogen
    69 importance
    70 inertial confinement fusion research
    71 interest
    72 interior
    73 internal structure
    74 key experiments
    75 knowledge
    76 laboratory
    77 materials
    78 measurements
    79 mixture
    80 model
    81 natural laboratory
    82 numerical simulations
    83 phase diagram
    84 physics
    85 planetary conditions
    86 planetary interiors
    87 planetary science
    88 planets
    89 pressure
    90 progress
    91 recent accurate measurements
    92 research
    93 review
    94 same time
    95 science
    96 shock experiments
    97 simulations
    98 state
    99 structure
    100 structure model
    101 temperature
    102 theoretical approach
    103 time
    104 topic
    105 understanding
    106 upcoming progress
    107 warm dense matter physics
    108 schema:name Understanding dense hydrogen at planetary conditions
    109 schema:pagination 562-574
    110 schema:productId N389604b6d8d94846909eb5ae5c46caf4
    111 Nd38e202bb746483fb8f81889f9e99d6d
    112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130468463
    113 https://doi.org/10.1038/s42254-020-0223-3
    114 schema:sdDatePublished 2022-05-20T07:37
    115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    116 schema:sdPublisher N2d775864d2ee48669b0f5090af7816ef
    117 schema:url https://doi.org/10.1038/s42254-020-0223-3
    118 sgo:license sg:explorer/license/
    119 sgo:sdDataset articles
    120 rdf:type schema:ScholarlyArticle
    121 N2d775864d2ee48669b0f5090af7816ef schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N389604b6d8d94846909eb5ae5c46caf4 schema:name dimensions_id
    124 schema:value pub.1130468463
    125 rdf:type schema:PropertyValue
    126 N4c62f4f952e542ea9f62803b136d9fdd schema:volumeNumber 2
    127 rdf:type schema:PublicationVolume
    128 N6badf24f134243e9b950a1e48ef33b59 rdf:first sg:person.01320146310.35
    129 rdf:rest N974697413f464b999c9e4ba025bbe1ba
    130 N974697413f464b999c9e4ba025bbe1ba rdf:first sg:person.0724761015.60
    131 rdf:rest rdf:nil
    132 Nc9f2adebceea4995adb1311fe964d92b schema:issueNumber 10
    133 rdf:type schema:PublicationIssue
    134 Nd38e202bb746483fb8f81889f9e99d6d schema:name doi
    135 schema:value 10.1038/s42254-020-0223-3
    136 rdf:type schema:PropertyValue
    137 Nda1b47fd51fe4759a55a1d730709a687 rdf:first sg:person.015372320145.30
    138 rdf:rest N6badf24f134243e9b950a1e48ef33b59
    139 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Physical Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    144 rdf:type schema:DefinedTerm
    145 sg:journal.1336253 schema:issn 2522-5820
    146 schema:name Nature Reviews Physics
    147 schema:publisher Springer Nature
    148 rdf:type schema:Periodical
    149 sg:person.01320146310.35 schema:affiliation grid-institutes:grid.410387.9
    150 schema:familyName Mazzola
    151 schema:givenName Guglielmo
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320146310.35
    153 rdf:type schema:Person
    154 sg:person.015372320145.30 schema:affiliation grid-institutes:grid.7400.3
    155 schema:familyName Helled
    156 schema:givenName Ravit
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015372320145.30
    158 rdf:type schema:Person
    159 sg:person.0724761015.60 schema:affiliation grid-institutes:grid.10493.3f
    160 schema:familyName Redmer
    161 schema:givenName Ronald
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724761015.60
    163 rdf:type schema:Person
    164 sg:pub.10.1007/978-3-319-55333-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107988078
    165 https://doi.org/10.1007/978-3-319-55333-7_44
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/978-3-319-64292-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100287415
    168 https://doi.org/10.1007/978-3-319-64292-5
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nature02910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006422739
    171 https://doi.org/10.1038/nature02910
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nature02968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024735914
    174 https://doi.org/10.1038/nature02968
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nature14681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035063751
    177 https://doi.org/10.1038/nature14681
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nature14964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029296188
    180 https://doi.org/10.1038/nature14964
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nature16164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005260441
    183 https://doi.org/10.1038/nature16164
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nature25775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101359727
    186 https://doi.org/10.1038/nature25775
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature25776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101361348
    189 https://doi.org/10.1038/nature25776
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/ncomms11189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017986734
    192 https://doi.org/10.1038/ncomms11189
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/ncomms1198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049063927
    195 https://doi.org/10.1038/ncomms1198
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/ncomms4487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033219288
    198 https://doi.org/10.1038/ncomms4487
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/ncomms8794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051866788
    201 https://doi.org/10.1038/ncomms8794
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/ngeo1791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024176949
    204 https://doi.org/10.1038/ngeo1791
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nmat4213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022149851
    207 https://doi.org/10.1038/nmat4213
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nphys625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343730
    210 https://doi.org/10.1038/nphys625
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/s41567-019-0646-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1121184615
    213 https://doi.org/10.1038/s41567-019-0646-x
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/s41586-018-0468-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106420918
    216 https://doi.org/10.1038/s41586-018-0468-5
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/s41586-019-1114-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113948238
    219 https://doi.org/10.1038/s41586-019-1114-6
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/s41586-019-1927-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124366357
    222 https://doi.org/10.1038/s41586-019-1927-3
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/s41586-020-2677-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1130695211
    225 https://doi.org/10.1038/s41586-020-2677-y
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/srep16560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045720657
    228 https://doi.org/10.1038/srep16560
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1134/1.1528696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024388406
    231 https://doi.org/10.1134/1.1528696
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1134/1.1623535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025880231
    234 https://doi.org/10.1134/1.1623535
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1134/1.1830656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036717902
    237 https://doi.org/10.1134/1.1830656
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1134/s0021364009040031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012003824
    240 https://doi.org/10.1134/s0021364009040031
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1134/s0021364018030116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103260606
    243 https://doi.org/10.1134/s0021364018030116
    244 rdf:type schema:CreativeWork
    245 grid-institutes:grid.10493.3f schema:alternateName Institut für Physik, Universität Rostock, Rostock, Germany
    246 schema:name Institut für Physik, Universität Rostock, Rostock, Germany
    247 rdf:type schema:Organization
    248 grid-institutes:grid.410387.9 schema:alternateName IBM Quantum, IBM Research — Zurich, Rüschlikon, Switzerland
    249 schema:name IBM Quantum, IBM Research — Zurich, Rüschlikon, Switzerland
    250 rdf:type schema:Organization
    251 grid-institutes:grid.7400.3 schema:alternateName Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Zurich, Switzerland
    252 schema:name Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Zurich, Switzerland
    253 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...