Topological valley transport at the curved boundary of a folded bilayer graphene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

E. Mania, A. R. Cadore, T. Taniguchi, K. Watanabe, L. C. Campos

ABSTRACT

The development of valleytronics demands long-range electronic transport with preserved valley index, a degree of freedom similar to electron spin. A promising structure for this end is a topological one-dimensional channel formed in a bilayer graphene, called a domain wall. In these channels, the valley-index defines the propagation direction of the charge carriers, and the chiral edge states are robust over many kinds of disorder. However, the fabrication of domain walls are challenging, requiring the design of complex multi-gate structures or production on rough substrates, showing a limited mean free path. Here, we report on a high-quality domain wall formed at the curved boundary of a folded bilayer graphene. Our experiments reveal long-range ballistic transport at such topological channels with the two-terminal resistance close to the ballistic resistance R = e2/4h at zero-magnetic field and the four-terminal resistance near to zero. At the bulk, we measure a tunable band gap. More... »

PAGES

6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s42005-018-0106-4

DOI

http://dx.doi.org/10.1038/s42005-018-0106-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111273985


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State University of Feira de Santana", 
          "id": "https://www.grid.ac/institutes/grid.412317.2", 
          "name": [
            "Physics Department, Federal University of Minas Gerais, Belo Horizonte, Brazil", 
            "Physics Department, State University of Feira de Santana, Feira de Santana, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mania", 
        "givenName": "E.", 
        "id": "sg:person.012570765772.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012570765772.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Minas Gerais", 
          "id": "https://www.grid.ac/institutes/grid.8430.f", 
          "name": [
            "Physics Department, Federal University of Minas Gerais, Belo Horizonte, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cadore", 
        "givenName": "A. R.", 
        "id": "sg:person.01157143636.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157143636.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Namiki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Namiki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "K.", 
        "id": "sg:person.010026307551.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Minas Gerais", 
          "id": "https://www.grid.ac/institutes/grid.8430.f", 
          "name": [
            "Physics Department, Federal University of Minas Gerais, Belo Horizonte, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campos", 
        "givenName": "L. C.", 
        "id": "sg:person.01250252244.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250252244.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.74.161403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009593757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.161403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009593757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1254966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009912648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2005.12.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016465455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3685504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017842016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.166601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023295233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.166601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023295233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.036804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024065080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.036804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024065080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032281296", 
          "https://doi.org/10.1038/nphys3551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.216406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038518881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.216406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038518881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040677202", 
          "https://doi.org/10.1038/nphys3485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.041404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042053077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.041404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042053077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686943", 
          "https://doi.org/10.1038/nature08105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686943", 
          "https://doi.org/10.1038/nature08105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.3.021018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045180810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.3.021018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045180810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.075418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045757383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.075418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045757383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.236809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045848100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.236809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045848100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046074102", 
          "https://doi.org/10.1038/nature18304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048170368", 
          "https://doi.org/10.1038/nnano.2016.158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1308853110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049457266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051960071", 
          "https://doi.org/10.1038/nature14364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.235416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052753805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.235416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052753805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201941f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201941f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.241404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.241404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.096801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.096801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06902-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090807805", 
          "https://doi.org/10.1038/s41598-017-06902-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511805776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098777352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41565-017-0042-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100523000", 
          "https://doi.org/10.1038/s41565-017-0042-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The development of valleytronics demands long-range electronic transport with preserved valley index, a degree of freedom similar to electron spin. A promising structure for this end is a topological one-dimensional channel formed in a bilayer graphene, called a domain wall. In these channels, the valley-index defines the propagation direction of the charge carriers, and the chiral edge states are robust over many kinds of disorder. However, the fabrication of domain walls are challenging, requiring the design of complex multi-gate structures or production on rough substrates, showing a limited mean free path. Here, we report on a high-quality domain wall formed at the curved boundary of a folded bilayer graphene. Our experiments reveal long-range ballistic transport at such topological channels with the two-terminal resistance close to the ballistic resistance R = e2/4h at zero-magnetic field and the four-terminal resistance near to zero. At the bulk, we measure a tunable band gap.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s42005-018-0106-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319375", 
        "issn": [
          "2399-3650"
        ], 
        "name": "Communications Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Topological valley transport at the curved boundary of a folded bilayer graphene", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4320be5bd73f2a83b343caf79247c122645713ea22468480ce7dfc471cc7d803"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s42005-018-0106-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111273985"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s42005-018-0106-4", 
      "https://app.dimensions.ai/details/publication/pub.1111273985"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6301_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s42005-018-0106-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s42005-018-0106-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s42005-018-0106-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s42005-018-0106-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s42005-018-0106-4'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s42005-018-0106-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ndec3a313b6be4afb92fbc08d7ce6d8bf
4 schema:citation sg:pub.10.1038/nature08105
5 sg:pub.10.1038/nature14364
6 sg:pub.10.1038/nature18304
7 sg:pub.10.1038/nnano.2016.158
8 sg:pub.10.1038/nphys3485
9 sg:pub.10.1038/nphys3551
10 sg:pub.10.1038/s41565-017-0042-6
11 sg:pub.10.1038/s41598-017-06902-9
12 https://doi.org/10.1016/j.carbon.2005.12.031
13 https://doi.org/10.1017/cbo9780511805776
14 https://doi.org/10.1021/nl201941f
15 https://doi.org/10.1063/1.3685504
16 https://doi.org/10.1073/pnas.1308853110
17 https://doi.org/10.1103/physrevb.74.161403
18 https://doi.org/10.1103/physrevb.84.075418
19 https://doi.org/10.1103/physrevb.86.165411
20 https://doi.org/10.1103/physrevb.86.235416
21 https://doi.org/10.1103/physrevb.92.041404
22 https://doi.org/10.1103/physrevb.92.241404
23 https://doi.org/10.1103/physrevlett.100.036804
24 https://doi.org/10.1103/physrevlett.102.096801
25 https://doi.org/10.1103/physrevlett.104.216406
26 https://doi.org/10.1103/physrevlett.105.166601
27 https://doi.org/10.1103/physrevlett.99.236809
28 https://doi.org/10.1103/physrevx.3.021018
29 https://doi.org/10.1126/science.1254966
30 schema:datePublished 2019-12
31 schema:datePublishedReg 2019-12-01
32 schema:description The development of valleytronics demands long-range electronic transport with preserved valley index, a degree of freedom similar to electron spin. A promising structure for this end is a topological one-dimensional channel formed in a bilayer graphene, called a domain wall. In these channels, the valley-index defines the propagation direction of the charge carriers, and the chiral edge states are robust over many kinds of disorder. However, the fabrication of domain walls are challenging, requiring the design of complex multi-gate structures or production on rough substrates, showing a limited mean free path. Here, we report on a high-quality domain wall formed at the curved boundary of a folded bilayer graphene. Our experiments reveal long-range ballistic transport at such topological channels with the two-terminal resistance close to the ballistic resistance R = e2/4h at zero-magnetic field and the four-terminal resistance near to zero. At the bulk, we measure a tunable band gap.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N50f42897ce9c402c926545dc36b841a9
37 N630b27a6b6a14b4cb142096a5120dd4b
38 sg:journal.1319375
39 schema:name Topological valley transport at the curved boundary of a folded bilayer graphene
40 schema:pagination 6
41 schema:productId N57c9e23beb7e45d6a1bf354bc9244bc5
42 N8b6ee995ca6342428b23206a03fa2f9b
43 Nc6ab52c7938140ee85fb722f43900386
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111273985
45 https://doi.org/10.1038/s42005-018-0106-4
46 schema:sdDatePublished 2019-04-11T08:37
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N9e39c0bbf9974d4099aa6e86758de870
49 schema:url https://www.nature.com/articles/s42005-018-0106-4
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N24fcf05cbbbc4ee69e9d04cfdff086b3 rdf:first N845f0df1efe642308d7244c1a2d0c3c6
54 rdf:rest N463d2202ac324b259ad221436b1c7140
55 N2d1e829cb7c74282948b3aafc3af4bf9 rdf:first sg:person.01250252244.25
56 rdf:rest rdf:nil
57 N3cca5081442c42d08afbc2f5161291b3 rdf:first sg:person.01157143636.36
58 rdf:rest N24fcf05cbbbc4ee69e9d04cfdff086b3
59 N463d2202ac324b259ad221436b1c7140 rdf:first sg:person.010026307551.76
60 rdf:rest N2d1e829cb7c74282948b3aafc3af4bf9
61 N50f42897ce9c402c926545dc36b841a9 schema:volumeNumber 2
62 rdf:type schema:PublicationVolume
63 N57c9e23beb7e45d6a1bf354bc9244bc5 schema:name dimensions_id
64 schema:value pub.1111273985
65 rdf:type schema:PropertyValue
66 N630b27a6b6a14b4cb142096a5120dd4b schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N845f0df1efe642308d7244c1a2d0c3c6 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
69 schema:familyName Taniguchi
70 schema:givenName T.
71 rdf:type schema:Person
72 N8b6ee995ca6342428b23206a03fa2f9b schema:name doi
73 schema:value 10.1038/s42005-018-0106-4
74 rdf:type schema:PropertyValue
75 N9e39c0bbf9974d4099aa6e86758de870 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nc6ab52c7938140ee85fb722f43900386 schema:name readcube_id
78 schema:value 4320be5bd73f2a83b343caf79247c122645713ea22468480ce7dfc471cc7d803
79 rdf:type schema:PropertyValue
80 Ndec3a313b6be4afb92fbc08d7ce6d8bf rdf:first sg:person.012570765772.93
81 rdf:rest N3cca5081442c42d08afbc2f5161291b3
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1319375 schema:issn 2399-3650
89 schema:name Communications Physics
90 rdf:type schema:Periodical
91 sg:person.010026307551.76 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
92 schema:familyName Watanabe
93 schema:givenName K.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76
95 rdf:type schema:Person
96 sg:person.01157143636.36 schema:affiliation https://www.grid.ac/institutes/grid.8430.f
97 schema:familyName Cadore
98 schema:givenName A. R.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157143636.36
100 rdf:type schema:Person
101 sg:person.01250252244.25 schema:affiliation https://www.grid.ac/institutes/grid.8430.f
102 schema:familyName Campos
103 schema:givenName L. C.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250252244.25
105 rdf:type schema:Person
106 sg:person.012570765772.93 schema:affiliation https://www.grid.ac/institutes/grid.412317.2
107 schema:familyName Mania
108 schema:givenName E.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012570765772.93
110 rdf:type schema:Person
111 sg:pub.10.1038/nature08105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686943
112 https://doi.org/10.1038/nature08105
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nature14364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051960071
115 https://doi.org/10.1038/nature14364
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature18304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046074102
118 https://doi.org/10.1038/nature18304
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nnano.2016.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048170368
121 https://doi.org/10.1038/nnano.2016.158
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nphys3485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040677202
124 https://doi.org/10.1038/nphys3485
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nphys3551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032281296
127 https://doi.org/10.1038/nphys3551
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/s41565-017-0042-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100523000
130 https://doi.org/10.1038/s41565-017-0042-6
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/s41598-017-06902-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090807805
133 https://doi.org/10.1038/s41598-017-06902-9
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.carbon.2005.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016465455
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/cbo9780511805776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098777352
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/nl201941f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218727
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.3685504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017842016
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.1308853110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049457266
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.74.161403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009593757
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.84.075418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045757383
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.86.165411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640257
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.86.235416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052753805
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.92.041404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042053077
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.92.241404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648319
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.100.036804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024065080
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.102.096801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754932
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.104.216406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038518881
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.105.166601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023295233
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.99.236809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045848100
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevx.3.021018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045180810
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/science.1254966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009912648
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
172 schema:name National Institute for Materials Science, Namiki, Japan
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.412317.2 schema:alternateName State University of Feira de Santana
175 schema:name Physics Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
176 Physics Department, State University of Feira de Santana, Feira de Santana, Brazil
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.8430.f schema:alternateName Universidade Federal de Minas Gerais
179 schema:name Physics Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...