Oligomerization state of the functional bacterial twin-arginine translocation (Tat) receptor complex View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-19

AUTHORS

Ankith Sharma, Rajdeep Chowdhury, Siegfried M. Musser

ABSTRACT

The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plastid energy transducing membranes. Ion leaks are generally considered to be mitigated by the creation and destruction of the translocation conduit in a cargo-dependent manner, a mechanism that enables tight sealing around a wide range of cargo shapes and sizes. In contrast to the variable stoichiometry of the active translocon, the oligomerization state of the receptor complex is considered more consistently stable but has proved stubbornly difficult to establish. Here, using a single molecule photobleaching analysis of individual inverted membrane vesicles, we demonstrate that Tat receptor complexes are tetrameric in native membranes with respect to both TatB and TatC. This establishes a maximal diameter for a resting state closed pore. A large percentage of Tat-deficient vesicles explains the typically low transport efficiencies observed. This individual reaction chamber approach will facilitate examination of the effects of stochastically distributed molecules. More... »

PAGES

988

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s42003-022-03952-2

DOI

http://dx.doi.org/10.1038/s42003-022-03952-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1151122638

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/36123532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arginine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Transport", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, 77843, College Station, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, 77843, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Ankith", 
        "id": "sg:person.012762427647.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762427647.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, 77843, College Station, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, 77843, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chowdhury", 
        "givenName": "Rajdeep", 
        "id": "sg:person.01010167567.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010167567.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, 77843, College Station, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, 77843, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musser", 
        "givenName": "Siegfried M.", 
        "id": "sg:person.0657571535.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657571535.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.2019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026706357", 
          "https://doi.org/10.1038/nmeth.2019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008053204", 
          "https://doi.org/10.1038/nmeth1024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-71630-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130722777", 
          "https://doi.org/10.1038/s41598-020-71630-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-19640-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100427038", 
          "https://doi.org/10.1038/s41598-018-19640-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004236851", 
          "https://doi.org/10.1038/ncomms2308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004650016", 
          "https://doi.org/10.1038/nmeth.2413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046924159", 
          "https://doi.org/10.1038/nature11683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028954521", 
          "https://doi.org/10.1038/ncomms8234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033855926", 
          "https://doi.org/10.1038/nature10016"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-19", 
    "datePublishedReg": "2022-09-19", 
    "description": "The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plastid energy transducing membranes. Ion leaks are generally considered to be mitigated by the creation and destruction of the translocation conduit in a cargo-dependent manner, a mechanism that enables tight sealing around a wide range of cargo shapes and sizes. In contrast to the variable stoichiometry of the active translocon, the oligomerization state of the receptor complex is considered more consistently stable but has proved stubbornly difficult to establish. Here, using a single molecule photobleaching analysis of individual inverted membrane vesicles, we demonstrate that Tat receptor complexes are tetrameric in native membranes with respect to both TatB and TatC. This establishes a maximal diameter for a resting state closed pore. A large percentage of Tat-deficient vesicles explains the typically low transport efficiencies observed. This individual reaction chamber approach will facilitate examination of the effects of stochastically distributed molecules.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s42003-022-03952-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4729430", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1300829", 
        "issn": [
          "2399-3642"
        ], 
        "name": "Communications Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "oligomerization state", 
      "receptor complex", 
      "twin-arginine translocation (Tat) system", 
      "single-molecule photobleaching analysis", 
      "active translocon", 
      "translocation system", 
      "photobleaching (FRAP) analysis", 
      "membrane vesicles", 
      "native membranes", 
      "ion leaks", 
      "variable stoichiometry", 
      "vesicles", 
      "complexes", 
      "TatC.", 
      "translocon", 
      "membrane", 
      "low transport efficiency", 
      "protein", 
      "chamber approach", 
      "wide range", 
      "TATB", 
      "molecules", 
      "transport efficiency", 
      "tight sealing", 
      "mechanism", 
      "stoichiometry", 
      "manner", 
      "contrast", 
      "pores", 
      "large percentage", 
      "analysis", 
      "size", 
      "destruction", 
      "state", 
      "effect", 
      "range", 
      "percentage", 
      "shape", 
      "system", 
      "approach", 
      "respect", 
      "conduit", 
      "efficiency", 
      "diameter", 
      "creation", 
      "examination", 
      "sealing", 
      "energy", 
      "leak", 
      "maximal diameter"
    ], 
    "name": "Oligomerization state of the functional bacterial twin-arginine translocation (Tat) receptor complex", 
    "pagination": "988", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1151122638"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s42003-022-03952-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "36123532"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s42003-022-03952-2", 
      "https://app.dimensions.ai/details/publication/pub.1151122638"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_943.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s42003-022-03952-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s42003-022-03952-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s42003-022-03952-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s42003-022-03952-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s42003-022-03952-2'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      89 URIs      72 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s42003-022-03952-2 schema:about N4a2ef575274f43369928bc05365848b6
2 N4e36d169c1984f839aff60cdfa791d03
3 Na9f13345644b47a0ab34bbe6dd41f670
4 Nde95d5676df848d4bfb814c6e3fdcaa6
5 Ne59ef9dcfc2c468eaa14f697cbd6df87
6 anzsrc-for:06
7 anzsrc-for:0601
8 schema:author Nb4a318e901134f3a88ff691c48df635f
9 schema:citation sg:pub.10.1038/nature10016
10 sg:pub.10.1038/nature11683
11 sg:pub.10.1038/ncomms2308
12 sg:pub.10.1038/ncomms8234
13 sg:pub.10.1038/nmeth.2019
14 sg:pub.10.1038/nmeth.2413
15 sg:pub.10.1038/nmeth1024
16 sg:pub.10.1038/s41598-018-19640-3
17 sg:pub.10.1038/s41598-020-71630-6
18 schema:datePublished 2022-09-19
19 schema:datePublishedReg 2022-09-19
20 schema:description The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plastid energy transducing membranes. Ion leaks are generally considered to be mitigated by the creation and destruction of the translocation conduit in a cargo-dependent manner, a mechanism that enables tight sealing around a wide range of cargo shapes and sizes. In contrast to the variable stoichiometry of the active translocon, the oligomerization state of the receptor complex is considered more consistently stable but has proved stubbornly difficult to establish. Here, using a single molecule photobleaching analysis of individual inverted membrane vesicles, we demonstrate that Tat receptor complexes are tetrameric in native membranes with respect to both TatB and TatC. This establishes a maximal diameter for a resting state closed pore. A large percentage of Tat-deficient vesicles explains the typically low transport efficiencies observed. This individual reaction chamber approach will facilitate examination of the effects of stochastically distributed molecules.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N700d29fdd99d4a1ea9d0616331c27797
24 Nd983013c97db4b41a15a83aa9bafb88d
25 sg:journal.1300829
26 schema:keywords TATB
27 TatC.
28 active translocon
29 analysis
30 approach
31 chamber approach
32 complexes
33 conduit
34 contrast
35 creation
36 destruction
37 diameter
38 effect
39 efficiency
40 energy
41 examination
42 ion leaks
43 large percentage
44 leak
45 low transport efficiency
46 manner
47 maximal diameter
48 mechanism
49 membrane
50 membrane vesicles
51 molecules
52 native membranes
53 oligomerization state
54 percentage
55 photobleaching (FRAP) analysis
56 pores
57 protein
58 range
59 receptor complex
60 respect
61 sealing
62 shape
63 single-molecule photobleaching analysis
64 size
65 state
66 stoichiometry
67 system
68 tight sealing
69 translocation system
70 translocon
71 transport efficiency
72 twin-arginine translocation (Tat) system
73 variable stoichiometry
74 vesicles
75 wide range
76 schema:name Oligomerization state of the functional bacterial twin-arginine translocation (Tat) receptor complex
77 schema:pagination 988
78 schema:productId N18cda2bac87747118f3c1932feafdbfa
79 N54be18cf45d548379490fef923169b05
80 Nec1dd3ba086a489687c9e6340f855616
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151122638
82 https://doi.org/10.1038/s42003-022-03952-2
83 schema:sdDatePublished 2022-11-24T21:09
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Nbe214d6fb66946b2ae2663cd997e3937
86 schema:url https://doi.org/10.1038/s42003-022-03952-2
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N18cda2bac87747118f3c1932feafdbfa schema:name pubmed_id
91 schema:value 36123532
92 rdf:type schema:PropertyValue
93 N4a2ef575274f43369928bc05365848b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Membrane Transport Proteins
95 rdf:type schema:DefinedTerm
96 N4e36d169c1984f839aff60cdfa791d03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Escherichia coli
98 rdf:type schema:DefinedTerm
99 N54be18cf45d548379490fef923169b05 schema:name doi
100 schema:value 10.1038/s42003-022-03952-2
101 rdf:type schema:PropertyValue
102 N700d29fdd99d4a1ea9d0616331c27797 schema:volumeNumber 5
103 rdf:type schema:PublicationVolume
104 N71caa3038c8348528fff1b3292e55f63 rdf:first sg:person.01010167567.15
105 rdf:rest Nbf68c9a88d554de59f5caa45c7965297
106 Na9f13345644b47a0ab34bbe6dd41f670 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Arginine
108 rdf:type schema:DefinedTerm
109 Nb4a318e901134f3a88ff691c48df635f rdf:first sg:person.012762427647.05
110 rdf:rest N71caa3038c8348528fff1b3292e55f63
111 Nbe214d6fb66946b2ae2663cd997e3937 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Nbf68c9a88d554de59f5caa45c7965297 rdf:first sg:person.0657571535.09
114 rdf:rest rdf:nil
115 Nd983013c97db4b41a15a83aa9bafb88d schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 Nde95d5676df848d4bfb814c6e3fdcaa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Protein Transport
119 rdf:type schema:DefinedTerm
120 Ne59ef9dcfc2c468eaa14f697cbd6df87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Escherichia coli Proteins
122 rdf:type schema:DefinedTerm
123 Nec1dd3ba086a489687c9e6340f855616 schema:name dimensions_id
124 schema:value pub.1151122638
125 rdf:type schema:PropertyValue
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biochemistry and Cell Biology
131 rdf:type schema:DefinedTerm
132 sg:grant.4729430 http://pending.schema.org/fundedItem sg:pub.10.1038/s42003-022-03952-2
133 rdf:type schema:MonetaryGrant
134 sg:journal.1300829 schema:issn 2399-3642
135 schema:name Communications Biology
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.01010167567.15 schema:affiliation grid-institutes:grid.264756.4
139 schema:familyName Chowdhury
140 schema:givenName Rajdeep
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010167567.15
142 rdf:type schema:Person
143 sg:person.012762427647.05 schema:affiliation grid-institutes:grid.264756.4
144 schema:familyName Sharma
145 schema:givenName Ankith
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762427647.05
147 rdf:type schema:Person
148 sg:person.0657571535.09 schema:affiliation grid-institutes:grid.264756.4
149 schema:familyName Musser
150 schema:givenName Siegfried M.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657571535.09
152 rdf:type schema:Person
153 sg:pub.10.1038/nature10016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033855926
154 https://doi.org/10.1038/nature10016
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature11683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046924159
157 https://doi.org/10.1038/nature11683
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ncomms2308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004236851
160 https://doi.org/10.1038/ncomms2308
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ncomms8234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028954521
163 https://doi.org/10.1038/ncomms8234
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth.2019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026706357
166 https://doi.org/10.1038/nmeth.2019
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nmeth.2413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004650016
169 https://doi.org/10.1038/nmeth.2413
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nmeth1024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008053204
172 https://doi.org/10.1038/nmeth1024
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/s41598-018-19640-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100427038
175 https://doi.org/10.1038/s41598-018-19640-3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/s41598-020-71630-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130722777
178 https://doi.org/10.1038/s41598-020-71630-6
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.264756.4 schema:alternateName Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, 77843, College Station, TX, USA
181 schema:name Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, 77843, College Station, TX, USA
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...