The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-19

AUTHORS

George Khelashvili, Ekaterina Kots, Xiaolu Cheng, Michael V. Levine, Harel Weinstein

ABSTRACT

TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids. More... »

PAGES

990

References to SciGraph publications

  • 2006-11-13. Lipid flippases and their biological functions in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2019-04-23. An inner activation gate controls TMEM16F phospholipid scrambling in NATURE COMMUNICATIONS
  • 2012-10-10. A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 1959-12. A note on two problems in connexion with graphs in NUMERISCHE MATHEMATIK
  • 2010-11-24. Calcium-dependent phospholipid scrambling by TMEM16F in NATURE
  • 2019-10-31. Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16 in NATURE COMMUNICATIONS
  • 2017-02-08. Three novel ANO5 missense mutations in Caucasian and Chinese families and sporadic cases with gnathodiaphyseal dysplasia in SCIENTIFIC REPORTS
  • 2016-11-07. CHARMM36m: an improved force field for folded and intrinsically disordered proteins in NATURE METHODS
  • 2017-11-09. Gain of function of TMEM16E/ANO5 scrambling activity caused by a mutation associated with gnathodiaphyseal dysplasia in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2014-11-12. X-ray structure of a calcium-activated TMEM16 lipid scramblase in NATURE
  • 2017-01-06. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter in SCIENTIFIC REPORTS
  • 2011-10-19. ANO10 c.1150_1151del is a founder mutation causing autosomal recessive cerebellar ataxia in Roma/Gypsies in JOURNAL OF NEUROLOGY
  • 2022-05-11. TMEM16 scramblases thin the membrane to enable lipid scrambling in NATURE COMMUNICATIONS
  • 2014-09-03. ANO10 mutations cause ataxia and coenzyme Q10 deficiency in JOURNAL OF NEUROLOGY
  • 2018-08-14. Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase in NATURE COMMUNICATIONS
  • 2019-09-02. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K in NATURE COMMUNICATIONS
  • 2013-09-02. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s42003-022-03930-8

    DOI

    http://dx.doi.org/10.1038/s42003-022-03930-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1151121591

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/36123525


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anoctamins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Membrane", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electric Conductivity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phospholipid Transfer Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phospholipids", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Computational Biomedicine, Weill Cornell Medicine, 10065, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA", 
                "Institute for Computational Biomedicine, Weill Cornell Medicine, 10065, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khelashvili", 
            "givenName": "George", 
            "id": "sg:person.01067122241.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067122241.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kots", 
            "givenName": "Ekaterina", 
            "id": "sg:person.0641712327.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641712327.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Xiaolu", 
            "id": "sg:person.016246535023.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016246535023.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Computational Biomedicine, Weill Cornell Medicine, 10065, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA", 
                "Institute for Computational Biomedicine, Weill Cornell Medicine, 10065, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levine", 
            "givenName": "Michael V.", 
            "id": "sg:person.0767766051.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767766051.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Computational Biomedicine, Weill Cornell Medicine, 10065, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA", 
                "Institute for Computational Biomedicine, Weill Cornell Medicine, 10065, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weinstein", 
            "givenName": "Harel", 
            "id": "sg:person.01253663405.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253663405.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ejhg.2012.224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020243035", 
              "https://doi.org/10.1038/ejhg.2012.224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-11753-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120764276", 
              "https://doi.org/10.1038/s41467-019-11753-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-12865-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122196862", 
              "https://doi.org/10.1038/s41467-019-12865-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-022-30300-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1147770458", 
              "https://doi.org/10.1038/s41467-022-30300-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-017-2704-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092617718", 
              "https://doi.org/10.1007/s00018-017-2704-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05724-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070334", 
              "https://doi.org/10.1038/s41467-018-05724-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00415-011-6276-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028743577", 
              "https://doi.org/10.1007/s00415-011-6276-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01386390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041716633", 
              "https://doi.org/10.1007/bf01386390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09583", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027963928", 
              "https://doi.org/10.1038/nature09583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep40935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083733684", 
              "https://doi.org/10.1038/srep40935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027737652", 
              "https://doi.org/10.1038/nature13984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00415-014-7476-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008158610", 
              "https://doi.org/10.1007/s00415-014-7476-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep40076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045346850", 
              "https://doi.org/10.1038/srep40076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012360611", 
              "https://doi.org/10.1038/nmeth.4067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-006-6167-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043130523", 
              "https://doi.org/10.1007/s00018-006-6167-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-09778-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113639410", 
              "https://doi.org/10.1038/s41467-019-09778-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037825766", 
              "https://doi.org/10.1038/ncomms3367"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-09-19", 
        "datePublishedReg": "2022-09-19", 
        "description": "TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400\u2009\u00b5s all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s42003-022-03930-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3625317", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1300829", 
            "issn": [
              "2399-3642"
            ], 
            "name": "Communications Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "allosteric mechanism", 
          "specific protein regions", 
          "allosteric pathway", 
          "translocation pathway", 
          "membrane proteins", 
          "TMEM16 family", 
          "scramblase activity", 
          "phospholipid scramblase", 
          "competent state", 
          "hydrophilic groove", 
          "dimer interface", 
          "closed conformation", 
          "atom molecular dynamics simulations", 
          "protein regions", 
          "TMEM16F", 
          "observed destabilization", 
          "scramblase", 
          "determined structure", 
          "protein", 
          "pathway", 
          "lipids", 
          "molecular dynamics simulations", 
          "scramblases", 
          "conductive state", 
          "TMEM16", 
          "distal sites", 
          "Ca2", 
          "dynamics simulations", 
          "groove", 
          "mechanism", 
          "phospholipids", 
          "conformation", 
          "family", 
          "state", 
          "destabilization", 
          "ions", 
          "sites", 
          "structure", 
          "activity", 
          "region", 
          "dynamics", 
          "simulations", 
          "interface", 
          "analysis", 
          "opening", 
          "conditions", 
          "conduit"
        ], 
        "name": "The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase", 
        "pagination": "990", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1151121591"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s42003-022-03930-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "36123525"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s42003-022-03930-8", 
          "https://app.dimensions.ai/details/publication/pub.1151121591"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_922.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s42003-022-03930-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s42003-022-03930-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s42003-022-03930-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s42003-022-03930-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s42003-022-03930-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      21 PREDICATES      96 URIs      69 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s42003-022-03930-8 schema:about N331b158bf3ed4cc7b699cbec5eaf44bb
    2 N8ef48d7faf3646fea3b9960e5821ae07
    3 N96c0581affd5465f992456448ddb7eb5
    4 Nc462dcce9d0042a1800e8e89cac5deb3
    5 Ndd603e40300143d3a52eed7847de4428
    6 anzsrc-for:02
    7 anzsrc-for:0299
    8 anzsrc-for:06
    9 anzsrc-for:0601
    10 schema:author Na8da055fe12143659fa168ed6d39e35b
    11 schema:citation sg:pub.10.1007/bf01386390
    12 sg:pub.10.1007/s00018-006-6167-7
    13 sg:pub.10.1007/s00018-017-2704-9
    14 sg:pub.10.1007/s00415-011-6276-6
    15 sg:pub.10.1007/s00415-014-7476-7
    16 sg:pub.10.1038/ejhg.2012.224
    17 sg:pub.10.1038/nature09583
    18 sg:pub.10.1038/nature13984
    19 sg:pub.10.1038/ncomms3367
    20 sg:pub.10.1038/nmeth.4067
    21 sg:pub.10.1038/s41467-018-05724-1
    22 sg:pub.10.1038/s41467-019-09778-7
    23 sg:pub.10.1038/s41467-019-11753-1
    24 sg:pub.10.1038/s41467-019-12865-4
    25 sg:pub.10.1038/s41467-022-30300-z
    26 sg:pub.10.1038/srep40076
    27 sg:pub.10.1038/srep40935
    28 schema:datePublished 2022-09-19
    29 schema:datePublishedReg 2022-09-19
    30 schema:description TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.
    31 schema:genre article
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N6bdaec3136a54ff48423e491a130c4d4
    34 Na787ab33878447948de0c0ae070f7220
    35 sg:journal.1300829
    36 schema:keywords Ca2
    37 TMEM16
    38 TMEM16 family
    39 TMEM16F
    40 activity
    41 allosteric mechanism
    42 allosteric pathway
    43 analysis
    44 atom molecular dynamics simulations
    45 closed conformation
    46 competent state
    47 conditions
    48 conductive state
    49 conduit
    50 conformation
    51 destabilization
    52 determined structure
    53 dimer interface
    54 distal sites
    55 dynamics
    56 dynamics simulations
    57 family
    58 groove
    59 hydrophilic groove
    60 interface
    61 ions
    62 lipids
    63 mechanism
    64 membrane proteins
    65 molecular dynamics simulations
    66 observed destabilization
    67 opening
    68 pathway
    69 phospholipid scramblase
    70 phospholipids
    71 protein
    72 protein regions
    73 region
    74 scramblase
    75 scramblase activity
    76 scramblases
    77 simulations
    78 sites
    79 specific protein regions
    80 state
    81 structure
    82 translocation pathway
    83 schema:name The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase
    84 schema:pagination 990
    85 schema:productId N8b93f8e6cf3f46f2bbead12426869c45
    86 Nb2713151eec24080b2d1d4547a3ddbd1
    87 Ncb3a03a725d54ecc97f465b163f5f020
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151121591
    89 https://doi.org/10.1038/s42003-022-03930-8
    90 schema:sdDatePublished 2022-12-01T06:43
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N35952d2571e345d187617566346d2cb6
    93 schema:url https://doi.org/10.1038/s42003-022-03930-8
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N1a13a00612324ebf898b48e7c8b8bcbc rdf:first sg:person.0641712327.41
    98 rdf:rest Nc6f73352888f45ce8963376fc1f02f5c
    99 N331b158bf3ed4cc7b699cbec5eaf44bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Electric Conductivity
    101 rdf:type schema:DefinedTerm
    102 N35952d2571e345d187617566346d2cb6 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 N6bdaec3136a54ff48423e491a130c4d4 schema:volumeNumber 5
    105 rdf:type schema:PublicationVolume
    106 N8b93f8e6cf3f46f2bbead12426869c45 schema:name doi
    107 schema:value 10.1038/s42003-022-03930-8
    108 rdf:type schema:PropertyValue
    109 N8ef48d7faf3646fea3b9960e5821ae07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Anoctamins
    111 rdf:type schema:DefinedTerm
    112 N96c0581affd5465f992456448ddb7eb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Phospholipids
    114 rdf:type schema:DefinedTerm
    115 Na787ab33878447948de0c0ae070f7220 schema:issueNumber 1
    116 rdf:type schema:PublicationIssue
    117 Na8da055fe12143659fa168ed6d39e35b rdf:first sg:person.01067122241.44
    118 rdf:rest N1a13a00612324ebf898b48e7c8b8bcbc
    119 Naae4bf194bf645f6bb9c3322a62d68a8 rdf:first sg:person.01253663405.21
    120 rdf:rest rdf:nil
    121 Nb2713151eec24080b2d1d4547a3ddbd1 schema:name pubmed_id
    122 schema:value 36123525
    123 rdf:type schema:PropertyValue
    124 Nc462dcce9d0042a1800e8e89cac5deb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Phospholipid Transfer Proteins
    126 rdf:type schema:DefinedTerm
    127 Nc6f73352888f45ce8963376fc1f02f5c rdf:first sg:person.016246535023.53
    128 rdf:rest Ne1e6f2673c354bcdb614b8ea74551da6
    129 Ncb3a03a725d54ecc97f465b163f5f020 schema:name dimensions_id
    130 schema:value pub.1151121591
    131 rdf:type schema:PropertyValue
    132 Ndd603e40300143d3a52eed7847de4428 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Cell Membrane
    134 rdf:type schema:DefinedTerm
    135 Ne1e6f2673c354bcdb614b8ea74551da6 rdf:first sg:person.0767766051.75
    136 rdf:rest Naae4bf194bf645f6bb9c3322a62d68a8
    137 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Physical Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Other Physical Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Biological Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Biochemistry and Cell Biology
    148 rdf:type schema:DefinedTerm
    149 sg:grant.3625317 http://pending.schema.org/fundedItem sg:pub.10.1038/s42003-022-03930-8
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1300829 schema:issn 2399-3642
    152 schema:name Communications Biology
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.01067122241.44 schema:affiliation grid-institutes:grid.5386.8
    156 schema:familyName Khelashvili
    157 schema:givenName George
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067122241.44
    159 rdf:type schema:Person
    160 sg:person.01253663405.21 schema:affiliation grid-institutes:grid.5386.8
    161 schema:familyName Weinstein
    162 schema:givenName Harel
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253663405.21
    164 rdf:type schema:Person
    165 sg:person.016246535023.53 schema:affiliation grid-institutes:grid.5386.8
    166 schema:familyName Cheng
    167 schema:givenName Xiaolu
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016246535023.53
    169 rdf:type schema:Person
    170 sg:person.0641712327.41 schema:affiliation grid-institutes:grid.5386.8
    171 schema:familyName Kots
    172 schema:givenName Ekaterina
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641712327.41
    174 rdf:type schema:Person
    175 sg:person.0767766051.75 schema:affiliation grid-institutes:grid.5386.8
    176 schema:familyName Levine
    177 schema:givenName Michael V.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767766051.75
    179 rdf:type schema:Person
    180 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
    181 https://doi.org/10.1007/bf01386390
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s00018-006-6167-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043130523
    184 https://doi.org/10.1007/s00018-006-6167-7
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00018-017-2704-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092617718
    187 https://doi.org/10.1007/s00018-017-2704-9
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00415-011-6276-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028743577
    190 https://doi.org/10.1007/s00415-011-6276-6
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00415-014-7476-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008158610
    193 https://doi.org/10.1007/s00415-014-7476-7
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ejhg.2012.224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020243035
    196 https://doi.org/10.1038/ejhg.2012.224
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nature09583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027963928
    199 https://doi.org/10.1038/nature09583
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature13984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027737652
    202 https://doi.org/10.1038/nature13984
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/ncomms3367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037825766
    205 https://doi.org/10.1038/ncomms3367
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nmeth.4067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012360611
    208 https://doi.org/10.1038/nmeth.4067
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/s41467-018-05724-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070334
    211 https://doi.org/10.1038/s41467-018-05724-1
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/s41467-019-09778-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113639410
    214 https://doi.org/10.1038/s41467-019-09778-7
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/s41467-019-11753-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120764276
    217 https://doi.org/10.1038/s41467-019-11753-1
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/s41467-019-12865-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122196862
    220 https://doi.org/10.1038/s41467-019-12865-4
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41467-022-30300-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1147770458
    223 https://doi.org/10.1038/s41467-022-30300-z
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/srep40076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045346850
    226 https://doi.org/10.1038/srep40076
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/srep40935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083733684
    229 https://doi.org/10.1038/srep40935
    230 rdf:type schema:CreativeWork
    231 grid-institutes:grid.5386.8 schema:alternateName Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA
    232 Institute for Computational Biomedicine, Weill Cornell Medicine, 10065, New York, NY, USA
    233 schema:name Department of Physiology and Biophysics, Weill Cornell Medicine, 10065, New York, NY, USA
    234 Institute for Computational Biomedicine, Weill Cornell Medicine, 10065, New York, NY, USA
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...